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Abstract

This talk will be on the Multiple Testing Problem, which occurs when we are
performing simultaneous hypothesis testing on the same set of data. The issue
gets increasingly severe as the number of tests increases. The problem is hard
to neglect, and is common in real life with examples including genetic
research like GWAS and AB Testing for web designs. This talk will go over
some basic remedies to the problem - the FWER controls like Bonferroni
correction and the FDR controls like the BH procedure. It is self-contained
and requires no prerequisite, but it would be helpful to have some knowledge
of basic Statistics such as hypothesis testing and significance level, although
they will be covered too.
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Fisherian Test (1)

Setting: 8 cups - 4 milk then tea; 4 tea then milk

Experiment: Taste each cup, indicate whether it is milk then tea or tea then
milk

Hypothesis: No such ability.

Significance Level: 5%

Prob. of 4 Correct Guesses at random: 1 ÷
(8
4
)
≈ 0.014 < 5%

Prob. of 3+ Correct Guesses at random: (1 +
(4
3
) (4
1
)
) ÷

(8
4
)
≈ 0.24 > 5%
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Fisherian Test (2)

Hypothesis: One (null) hypothesis in mind.

p-value: Probability ? of having the given data assuming the null hypothesis
is true.

Significance Level: A pre-determined, reasonable yet arbitrary threshold U to
reject the null hypothesis.

Outcome: (1) ? < U, reject null (2) Otherwise, not reject null

Zhang Ruiyang (UCL) An Introduction to the Multiple Testing Problem 29 Nov 2021 4 / 17



Neyman-Pearson Test (1)

Hypothesis: Null Hypothesis �0, the claim that we aim to reject, and
Alternative Hypothesis �1, some different claim.

p-value: Probability ? of having the given data assuming the null hypothesis
is true.

Significance Level: Predetermined. Probability of rejecting the null
hypothesis when the null hypothesis is actually true.

Outcome: (1) ? < U, reject null (2) Otherwise, not reject null
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Neyman-Pearson Test (2)

�0 is true �0 is false

Reject �0
Type I Error
False Positive

U

Power
True Positive
1 − V

Not Reject �0
True Negative
1 − U

Type II Error
False Negative

V
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Multiple Testing Problem

Under true null, the random variable p-value follows Uniform(0, 1).

If U = 0.05, we will make a false positive on average for every 20 true null
tests.

20 true nulls, 1 false positive on average. 1000 true nulls, 50 false positives on
average.
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FWER

Given < null hypotheses denoted by �1, �2, · · · , �<:

True Null Hypothesis False Null Hypothesis Total
Reject + ( '

Not Reject * ) < − '
Total <0 < − <0 <

+, (,*, ) are random variables, ', <, <0 are known.

Family-wise Error Rate: FWER = P(+ ≥ 1) = 1 − P(+ = 0).
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Bonferroni Correction
Boole’s Inequality: For a countable set of events �1, �2, �3, · · · ,
P(⋃8 �8) ≤

∑
8 P(�8), due to sub-additivity property of probability measure.

With this inequality, since we are rejecting each null hypothesis �8 when its
p-value ?8 ≤ U

<
, we would have

FWER = P(+ ≥ 1)

= P
( <0⋃
8=1
(?8 ≤

U

<
)
)

<0 true null hypothesis

≤
<0∑
8=1
P(?8 ≤

U

<
) by Boole’s inequality

=

<0∑
8=1

U

<
p-value follows Uniform(0,1) under true null

=
<0
<
U ≤ U,

which indicates that the FWER is controlled under level U.
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Holm-Bonferroni Method (1)

(Holm, 1979)
For the < null hypotheses �1, �2, · · · , �<, we compute their respective
p-values %1, %2, · · · , %< and we rank them such that %(:) denotes the :-th
smallest p-value. So, %(1) ≤ %(2) ≤ · · · ≤ %(<) , and we denote the
corresponding null hypotheses as �(1) , �(2) , · · · , �(<) . We would want to
control the FWER at U.

Is %(1) ≤ U
<
? If so, reject �(1) and continue. Otherwise, EXIT.

Is %(2) ≤ U
<−1? If so, reject �(2) and continue. Otherwise, EXIT.

...

Is %(:) ≤ U
<−:+1? If so, reject �(:) and continue. Otherwise, EXIT.
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Holm-Bonferroni Method (2)

To show that this method does in fact keep the FWER at U, we let �0 be the set
of indices corresponding to the true null hypothesis. This set is unknown to us
and has size <0. Let us assume that we make the first false positive decision at
�(ℎ) . Based on the procedures stated above, all the decisions for null
hypothesis �(1) , �(2) , · · · , �(ℎ−1) are true positives. Also, we know for a fact
that ℎ − 1 ≤ < − <0 due to the definition of < − <0. This implies that
< − ℎ + 1 ≥ <0, and then 1

<−ℎ+1 ≤
1
<0

. Now, since �(ℎ) is rejected, we would
have %(ℎ) ≤ U

<−ℎ+1 by definition, so we will then have %(ℎ) ≤
U

<−ℎ+1 ≤
U
<0

.
This means, if there is any false positive, we have at least one true null
hypothesis with p-value less than U

<0
.
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Holm-Bonferroni Method (3)

FWER = P(+ ≥ 1)

= P
( ⋃
8∈�0
(%8 ≤

U

<0
)
)

≤
∑
8∈�0
P(%8 ≤

U

<0
) by Boole’s inequality

= <0
U

<0
p-value follows Uniform(0,1) under true null

= U,

which indicates that the FWER is controlled at level U.

Holm-Bonferroni Method is uniformly more powerful than Bonferroni.
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FDR

True Null Hypothesis False Null Hypothesis Total
Reject + ( '

Not Reject * ) < − '
Total <0 < − <0 <

(Benjamini & Hochberg, 1995)
Define a new random variable & = +/(+ + () where & = 0 when + + ( = 0.
This is the proportion of the false positives over all the rejected null
hypotheses. This is unobservable since we do not know + , or (, or their
realisations E or B. We will define the False Discovery Rate, or FDR, as the
expectation of &,

FDR = E[&] = E[+/(+ + ()] = E[+/'] .

To avoid the division by zero issue, we would have the alternative formula for
FDR as

FDR = E[+/' |' > 0]P(' > 0).
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FDR Properties

(1) If all the null hypotheses are true, FDR = FWER. When B = 0 and E = A,
& = 0 if E = 0 and & = 1 if E > 0, which means P(+ ≥ 1) = E[&]. This
means a control of FDR is a control of FWER in the weak sense.

(2) When <0 < <, FDR is no bigger than FWER. Given <0 < <, E > 0
implies E/(E + B) ≤ 1, which means + ≥ 1 =⇒ + ≥ E/(E + B) and
P(+ ≥ 1) ≥ E[&]. This means a control of FWER will control FDR.

Zhang Ruiyang (UCL) An Introduction to the Multiple Testing Problem 29 Nov 2021 14 / 17



Benjamini-Hochberg Procedure

For the < null hypotheses �1, �2, · · · , �<, we compute their respective
p-values %1, %2, · · · , %< and we rank them such that %(:) denotes the :-th
smallest p-value. So, %(1) ≤ %(2) ≤ · · · ≤ %(<) , and we denote the
corresponding null hypotheses as �(1) , �(2) , · · · , �(<) . We let the level of
FDR that we would want to control at as U. The procedure works as the
following:

Let : be the largest 8 for which %(8) ≤ 8
<
U.

Reject all �(8) where 8 = 1, 2, · · · , : .

Theorem
For independent test statistics and for any configuration of false null
hypotheses, the above precedure controls the FDR at U.
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Extensions

Weaken Independence Criteria for BH Procedure

FDR Control using Empirical Bayes methods

Online Multiple Testing

Knockoff for Variable Selection
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