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Introduction

Limit Supremum and Limit Infimum

lim
n→∞

an = lim
n→∞

sup
k≥n

ak, lim
n→∞

an = lim
n→∞

inf
k≥n

ak.

If lim an = u, then
• ∀ε > 0∃N0 = N0(ε) s.t. ∀n > N0, an < u + ε

• ∀ε > 0∀N1 > 0∃n > N1 s.t. an > u − ε.

Examples
• lim(−1)n = 1, lim(−1)n = −1.
• lim(pn+1 − pn) = +∞: primes can be arbitrarily far from each other.
• lim(pn+1 − pn) = 2 is the twin prime conjecture.
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Introduction

Small Gaps Between Primes
Let gn = pn+1 − pn be the prime gap function. Then it is known that
• PNT gives lim gn/ log pn ≤ 1 ≤ lim gn/ log pn.
• Paul Erdös (1940)1: ∃δ > 0 s.t. lim gn/ log pn ≤ 1− δ.
• D. Goldston, J. Pintz, and C. Yıldırım (2009)2: lim gn < ∞ under certain hypothesis.
• Yitang Zhang (张益唐) (2013)3: lim gn < 7× 107 unconditionally.
• James Maynard (2013)4: lim gn ≤ 600 and ∀m ∈ N∃C(m) s.t. lim(pn+m − pn) < C(m).
• Best record: lim gn ≤ 246.

Prime gaps are mainly studied using sieve methods.

1Duke Math. J, 6(2), 438 – 441 (1940)
2Annals of Mathematics, 170(2), 819 – 862. (2009)
3Annals of Mathematics, 179(3), 1121 – 1174 (2014)
4Annals of Mathematics, 181(1), 383 – 413 (2015)
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Introduction

Sieve Theory
“We often apply, consciously or not, some kind of sieve procedure whenever the subject of

investigation is not directly recognizable.”—— Henryk Iwaniec

Let Ω(n) denote the number of prime factors of n counted with multiplicities. Then
• Viggo Brun (1919)5: Reciprocal sum of all twin primes converges.
• Lev Schnirelmann (1930)6: ∃C > 0 s.t. every n ∈ N is a sum of ≤ C primes.
• Jingrun Chen (陈景润) (1973)7: ∀ large even N, ∃p ≤ N s.t. Ω(N − p) ≤ 2.
• Henryk Iwaniec (1978)8: ∃infinitely many integer n s.t. Ω(n2 + 1) ≤ 2.

5Skr. Norske Vid. Akad, 3, 1 – 36 (1920)
6Proc. Don Polytechnic Institute in Novocherkassk, 14, 3 – 27 (1930)
7Scientia Sinica, 16(2), 157 – 176 (1973).
8Inventiones mathematicae, 47(2), 171 – 188 (1978).
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Introduction

What is a Sieve
Let A ⊂ Z and z ≥ 2. When S(A, z) denotes the cardinality of

{a ∈ A : ∀p < z, a 6≡ 0 (mod p)},

we call S(A, z) the sieve function, which satisfies the following properties
1. For all 2 ≤ w ≤ z, we have S(A, z) ≤ S(A,w) ≤ |A|.
2. If a ∈ A ⇒ a < x, then S(A, x1/m) > 0 ⇒ ∃a ∈ A,Ω(a) ≤ dme − 1.

Examples
• When A = {n(x − n) : 1 < n < x}, propsition ”9+9” follows from S(A, x1/10) > 0.
• When A = {n(n + 2) : 1 < n ≤ x}, there is π2(x) ≤ S(A, z) + z.
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Selberg’s Sieve

Atle Selberg

Atle Selberg
• 1917 – 2007
• A positive proportion of ζ(s)’s nontrivial

zeros lies on <(s) = 1
2 (1942)

• Selberg’s sieve (1947)
• Elementary proof of the PNT (1949)
• Fields Medal (1950)
• ……
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Selberg’s Sieve

Selberg’s Sieve

Let P(z) denote product of all primes < z, then S(A, z) counts the number of elements of A
that are coprime to P(z). Let λd ∈ R s.t. λ1 = 1. Then

S(A, z) =
∑
a∈A

(a,P(z))=1

1 ≤
∑
a∈A

 ∑
d|(a,P(z))

λd

2

=
∑

d1,d2|P(z)
λd1λd2 |A[d1,d2]|,

where Ad = {a ∈ A : a ≡ 0 (mod d)} (i.e. all multiples of d in set A).

Hypothesis on Ad

∃X > 0 and ∃ multiplicative g(d) s.t. r(d) = |Ad| − g(d)X is relatively small.
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Selberg’s Sieve

Interchanging summation gives

S(A, z) ≤ XM + E, M =
∑

d1,d2|P(z)
λd1λd2g([d1, d2])

Hypothesis on λd

There exists R > 0 such that λd is only supported on 1 ≤ d < R (i.e. λd = 0 for all d ≥ R)

E ≤ λ2
max

∑
d<R2

d|P(z)

3ω(d)|r(d)|,

where λmax = supd<R |λd| and ω(d) denotes the number of distinct prime divisors of d.

9 / 38



Selberg’s Sieve

Diagonalization of Quadratic Forms

Let h(d) be multiplicative such that h(p) = g(p)/(1− g(p)) for all prime p. Then we have

1

g(d) =
∑
m|d

1

h(m)
, M =

∑
m|P(z)

y2m
h(m)

, where ym =
∑

d|P(z)
d≡0(m)

λdg(d).

By Möbius inversion, λd can be recovered from ym:

λd =
1

g(d)
∑

m|P(z)
m≡0(d)

µ
(m

d
)

ym =
1

g(d)
∑

t|P(z)
(t,d)=1

µ(t)ytd.
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Selberg’s Sieve

Optimal Choice of ym and λd
To obtain sharp upper bound, we hope to minimize M. By the Cauchy’s inequality, we have

12 =

 ∑
m|P(z)

µ(m)ym

2

≤ M
∑
m<R

m|P(z)

h(m).

The equality holds when

ym = µ(m)h(m)/
∑
m<R

m|P(z)

h(m) ⇐⇒ λd = µ(d)h(d)
g(d)

∑
t<R/d
t|P(z)
(t,d)=1

h(t)
/ ∑

m<R
m|P(z)

h(m). (1)

From (1), one can prove that λmax = 1.
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Selberg’s Sieve

Asymptotic Formula for λd

Hypothesis on g(d) and sieve dimension
Let g(p) be well approximated by k/p, where k > 0 is called sieve dimension。

Example
When A = {n(n + 2) : 1 < n ≤ x}, there is g(2) = 1/2 and g(p) = 2/p for p > 2.

Based on this hypothesis, Ankeny and Onishi9 proved that (1) admits the asymptotic

λd ∼ µ(d)
(

log R/d
log R

)k
. (2)

9Acta Arith, 10(1), 31 – 62 (1962)
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Selberg’s Sieve

Sieves and Lower Bound Problems
Typical lower bound problem
Let A,B ⊂ Z. Show that |A ∩ B| > 0.

Examples
When B denotes set of all primes,
• A = {2n − p : p < 2n} ⇒Goldbach’s problem
• A = {p + 2 : p < x} ⇒Twin primes problem

During the 20th century, lower bound problems are studied via combinatorial sieves:

|A ∩ B| > X0 −
∑

j
Yj, (3)

where Selberg’s sieve only is used to give upper estimates for Yj.
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Selberg’s Sieve

Weighted Selberg’s Sieve

We can also study the lower bound more directly than (3).

Weight function
Let w : A 7→ R be a function that is nonpositive whenever n /∈ B.

Therefore, the inequality

S =
∑
n∈A

w(n)
(∑

d∈Dn

λd

)2

> 0 (4)

serves as a sufficient condition for A∩B to be nonempty. Because we are unable to determine
the optimal λd as we have done for the conventional Selberg’s sieve, we evaluate S directly by
plugging expressions analogous to (2).
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The Sieve of Goldston, Pintz, and Yıldırım

The Sieve of Goldston, Pintz, and Yıldırım

Daniel A. Goldston
János Pintz Cem Y. Yıldırım

15 / 38



The Sieve of Goldston, Pintz, and Yıldırım

Prime k-Tuple Conjecture

H = {h1, h2, . . . , hk} ⊂ Z is admissible iff n+ h1, n+ h2, . . . , n+ hk has no fixed prime divisor.

Theorem
Set Q(n) = (n + h1)(n + h2) · · · (n + hk), and let νp denote the number of solutions to
Q(n) ≡ 0 (mod p). Then H is admissible iff νp < p holds for all prime p.

Hardy-Littlewood9 prime k-tuple conjecture
If H is admissible then there exists infinitely many integer n such that all of n + h1, n + h2,
. . . , and n + hk are primes.

9Acta Mathematica, 44, 1 – 70 (1923)
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The Sieve of Goldston, Pintz, and Yıldırım

Prime k-Tuples and Bounded Gaps Between Primes

If H admissible and ∀N > 0, ∃n > N,∃1 ≤ i < j ≤ k s.t. n + hi and n + hj prime, then ∃
infinitely many n s.t. pn+1 − pn < ∞:

lim
n→∞

(pn+1 − pn) ≤ max
1≤i<j≤k

|hi − hj|. (5)

From this idea, we can construct a weight function to investigate prime gaps:

w(n) =
∑
1≤i≤k

χP(n + hi)− 1, χP(n) =
{
1 n prime
0 otherwise

Plugging this weight into (4) yields the sieve of Goldston, Pintz, and Yıldırım (GPY).
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The Sieve of Goldston, Pintz, and Yıldırım

The Sieve of Goldston, Pintz, and Yıldırım
Let S1 and S(i)

2 denote the sums

S1 =
∑

N<n≤2N

 ∑
d|Q(n)

λd

2

, S(i)
2 =

∑
N<n≤2N

χP(n + hi)

 ∑
d|Q(n)

λd

2

.

Then the inequality

S =
∑
1≤i≤k

S(i)
2 − S1 =

∑
N<n≤2N

 ∑
1≤i≤k

χP(n + hi)− 1

 ∑
d|Q(n)

λd

2

> 0.

implies the existence of bounded gaps between primes.
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The Sieve of Goldston, Pintz, and Yıldırım

Primes in Arithmetic Progressions
During the expansion of S(i)

2 , we are confronted with error terms of the form

E(x,R2) =
∑

d≤R2

3ω(d) max
(a,d)=1

|∆(x; d, a)|, ∆(x; d, a) =
∑

x<n≤2x
n≡a(d)

χP(n)−
1

φ(d)

∫ 2x

x

dt
log t .

Pick admissible D = D(x) so that ∀A > 0∃C(A) > 0 s.t. E(x,D) < C(A)x/ logA x.
• A. Walfisz (1936)10: D ≤ (log x)A.
• A. Rényi (1947)11: ∃η > 0 s.t. D ≤ xη.
• A. I. Vinogradov12 and E. Bombieri13 (1965): D ≤ x1/2−ε.

10Math Z, 40(1), 592 – 607 (1936)
11Izv. Akad. Nauk SSSR, Ser. Mat, 12, 57 – 78 (1948)
12Izv. Akad. Nauk SSSR, Ser. Mat, 29, 903 – 934 (1965)
13Mathematika, 12(2), 201 – 225, (1965)
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The Sieve of Goldston, Pintz, and Yıldırım

Definition (Level of distribution of primes)
θ is called the level of distribution of primes if θ = sup{η > 0 : D = xη is admissible}.

Elliott–Halberstam conjecture
∀ε > 0,D = x1−ε is admissible for E(x,D) (i.e. θ = 1).

Plugging R2 = Nθ−ε into S(i)
2 , we have

S1 ∼ N
∑

d1,d2≤R

λd1λd2

[d1, d2]
∏

p|[d1,d2]

νp := T1,

S(i)
2 ∼ N

log N
∑

d1,d2≤R

λd1λd2

φ([d1, d2])
∏

p|[d1,d2]

(νp − 1) := T2.

To further compute S1 and S(i)
2 , we will require explicit expressions of λd.
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The Sieve of Goldston, Pintz, and Yıldırım

Choice of Selberg parameter λd
Since Q(n) is of degree k, νp ≤ k, and because

νp 6= k ⇐⇒
∏

1≤i<j≤k
(hi − hj) ≡ 0 (mod p),

we see that S is a k-dimensional sieve problem. Plugging (2) into λd, we obtain

λd = µ(d)
(

log R/d
log R

)k
⇒ S ∼ C1(H)

N
(log R)k

(
k

k + 1
θ − 1

)
,

where C1(H) is some positive constant. Even if we assume Elliott–Halberstam conjecture (i.e.
θ = 1), the right hand side is still not positive.

Hmmm... k-dimensional λd could not handle a k-dimensional sieve problem.
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The Sieve of Goldston, Pintz, and Yıldırım

GPY’s Dimensionality Augmentation Attack
As the k-dimensional sieve failes to attack this k-dimensional sieve problem, why don’t we
consider a dimensionality augmentation attack?

λd = µ(d)
(

log R/d
log R

)k+ℓ

. (6)

Plugging this k + ℓ dimensional λd into S, we obtaim

S ∼ C1(H)
N

(log R)k [C2(k, ℓ)θ − 1], C2(k, ℓ) =
k(2ℓ+ 1)

(2ℓ+ k + 1)(ℓ+ 1)
.

C2(k, ℓ) → 2 when k, ℓ → ∞ and ℓ/k → 0, so ∃k, ℓ s.t. C2(k, ℓ)θ > 1 when θ > 1
2 (Why?).

We are not done yet. Can we always construct admissible k-tuple for every given k?
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The Sieve of Goldston, Pintz, and Yıldırım

Existence of Admissible H for Given k
Let h1 < h2 < · · · < hk denote some primes greater than k. Because p ≤ k implies
p ∤ Q(0) = h1h2 · · · hk, we conclude that H = {h1, h2, . . . , hk} is admissible.

If π(M)− π(k) ≥ k, then
max
1≤i,j≤k

|hi − hj| = hk − h1 < M.

Combining this with inequality (5), we deduce the GPY theorem:

Theorem (Goldston, Pintz, and Yıldırım)
If θ > 1/2, then there exists C = C(θ) ≥ 2 such that

lim
n→∞

(pn+1 − pn) ≤ C(θ).

Can we make this unconditional?
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The Work of Yitang Zhang

The Work of Yitang Zhang
Yitang Zhang (张益唐)
• Ph.D. in Mathematics from Purdue (1991)
• His advisor refused to write

recommendation letters for him.
• Worked a few years in a Subway sandwich

shop13 before becoming a lecturer at
University of New Hampshire in 1999.

• Proved lim(pn+1 − pn) < 7× 107 in 2013.
• Professor at University of California, Santa

Barbara.

13https://www.quantamagazine.org/
yitang-zhang-proves-landmark-theorem-in-distribution-of-prime-numbers-20130519/
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The Work of Yitang Zhang

Smoothing the GPY Sieve
Definition (Smooth numbers)
A number n is said to be y-smooth iff all of its prime divisors are less than or equal to y.

GPY require λd = 0 if d ≥ R. Zhang, in addition, requires λd = 0 when d has prime divisor
greater than z = Nϖ:

S̃1 =
∑

N<n≤2N

 ∑
d|Q(n)

p|d⇒p≤z

λd


2

, S̃(i)
2 =

∑
N<n≤2N

χP(n + hi)

 ∑
d|Q(n)

p|d⇒p≤z

λd


2

,

S̃ =
∑
1≤i≤k

S̃(i)
2 − S̃1 =

∑
N<n≤2N

 ∑
1≤i≤k

χP(n + hi)− 1


 ∑

d|Q(n)
p|d⇒p≤z

λd


2

(7)

constitute the smoothed GPY sieve.
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The Work of Yitang Zhang

Zhang’s Upper Bound and Lower Bound

Zhang found that the main terms T̃1, T̃2 of S̃1 and S̃(i)
2 are well approximated by T1 and T2.

Theorem (Zhang’s upper bound and lower bound)
Let

δ1 = (1 + 4ϖ)−k, δ2 =
∑

0≤v≤292

(k log 293)v

v! ,

κ1 = δ1(1 + δ22 + k log 293)
(

k + 2ℓ

k

)
, κ2 = δ1(1 + 4ϖ)(1 + δ22 + k log 293)

(
k + 2ℓ+ 1

k − 1

)
.

Then we have
T̃1 < (1 + κ1)T1, T̃2 > (1− κ2)T2. (8)
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The Work of Yitang Zhang

Level of Distribution over Smooth Moduli
In Zhang’s smoothed GPY sieve, the error term in S̃(i)

2 takes the form of

Ẽ(x,R2, z) =
∑

d≤R2

p|d⇒p≤z

3ω(d) max
(a,d)=1

|∆(x; d, a)|.

Employing Deligne’s proof of Weil’s conjectures, Zhang proved

Theorem (Zhang’s error term)
For all A > 0, there exists C(A) > 0 such that Ẽ(N,R2, z) < C(A)N/ logA N when

ϖ =
1

1168
, z = Nϖ, R = N 1

4
+ϖ.

In essence, Zhang shows that θ = 1
2 + 1

584 holds when only smooth d is considered.
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The Work of Yitang Zhang

Unconditional Existence of Bounded Gap
Plugging (8) into (7), we obtain

S̃ > C1(H)
N

(log R)k [C3(k, ℓ,ϖ)− 1], C3(k, ℓ,ϖ) =
1− κ2
1 + κ1

k(2ℓ+ 1)(1 + 4ϖ)

(2ℓ+ k + 1)(2ℓ+ 2)
.

After performing a series of numerical computations, we see that when

k = 3.5× 106, ℓ = 180, ϖ =
1

1168
,

there is 0 < κ1 < e−1200, 0 < κ2 < e20κ1, and

C3(k, ℓ,ϖ) >
1− κ2
1 + κ1

× 1.0005 >
1− e−1980

1 + e−1200
× (1 + e−8) > 1.

Therefore, we establish the unconditional existence of bounded gap between primes.
Can we obtain an explicit bound for the prime gap?
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The Work of Yitang Zhang

Explicit Prime Gap Bound
Rosser and Schoenfeld14 proved that for x ≥ 60 there is

x
log x < π(x) < x

log x

(
1 +

2

log x

)
,

so when k = 3.5× 106, there is

π(M)− π(k) > M
log M − k

log k

(
1 +

2

log k

)
>

M
log M − 2.4× 105 × 1.2.

Plugging M = 7× 107 allows us to make the right hand side > 3.5× 106 = k, so we deduce

Theorem (Zhang’s bounded gap)

lim
n→∞

(pn+1 − pn) < 7× 107.

14Illinois Journal of Mathematics, 6(1), 64 – 94 (1962)
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The Work of Yitang Zhang

Improving Zhang’s Theorem
Zhang was not interested in improving the 7× 107 bound.

Soon after Zhang, Polymath8 project was initiated to improve Zhang’s result. By November
2013, the project concluded with15

lim
n→∞

(pn+1 − pn) ≤ 4680.

Can we improve this even further?

15https:
//terrytao.wordpress.com/2013/11/17/polymath8-writing-the-first-paper-v-and-a-look-ahead/
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James Maynard’s Dimensionality Reduction Attack

James Maynard’s Dimensionality Reduction Attack

James Maynard
• Ph.D. in Mathematics from Oxford (2013)
• Proved that lim(pn+1 − pn) ≤ 600 and

limn→∞(pn+m − pn) < ∞ for every fixed
m ∈ N in 2013.

• Received Fields medal in 2022.
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James Maynard’s Dimensionality Reduction Attack

The Dimensionality Reduction
Instead of improving θ in Zhang’s fashion, Maynard modifies the structure of λd:

S =
∑

N<n≤2N
n≡v0 (mod W)

 ∑
1≤i≤k

χP(n + hi)− ρ

 ∑
∀i,di|(n+hi)

λd1,d2,...,dk

2

Formally, Maynard is attacking a k-dimensional problem using k one-dimensional sieves, which
allows him to deduce only from Bombieri–Vinogradov’s θ = 1

2 that

lim
n→∞

(pn+1 − pn) ≤ 600

and a generalization that ∀m ∈ N∃C(m) such that

lim
n→∞

(pn+m − pn) ≤ C(m).
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James Maynard’s Dimensionality Reduction Attack

Maynard’s Variational Problem
By making a deft choice of λd1,...,dk , Maynard shows that for large N, the inequality

S >
φ(W)kN(log R)k

Wk Ik(F)
(
θ

2
Mk(F)− ρ

)
, Mk(F) =

kJk(F)
Ik(F)

.

holds for any symmetric, continuous F : [0, 1]k 7→ R, where

Ik(F) =
∫

· · ·
∫

0≤t1,...,tk≤1

F2(t1, . . . , tk)dt1 · · · dtk

and
Jk(F) =

∫
· · ·
∫

0≤t2,...,tk≤1

(∫ 1

0
F(t1, t2, . . . , tk)dt1

)2

dt2 · · · dtk.

If Mk(F)θ/2 > ρ for some k, then pn+ρ − pn will be bounded infinitely many times.
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James Maynard’s Dimensionality Reduction Attack

Optimizing Mk(F) for Large k
Mappings like Mk(F) that inputs functions and outputs numbers are called functionals, and
the task of optimizing them is a variational problem.
Picking F with insight, Maynard proves that

Theorem (Maynard, 2013)
There exists some k0 such that for all k > k0 we have

sup
F

Mk(F) > log k − 2 log log k − 2

The theorem effectively shows that for all m ∈ N there is some constant C(m) > 0 such that

lim
n→∞

(pn+m − pn) < C(m).
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James Maynard’s Dimensionality Reduction Attack

Improving of Zhang’s Bound
To improve Zhang’s bound of 7× 107, it suffices to find some k such that

sup
F

Mk(F) > 2/θ

Choosing F carefully at small k, Maynard proves that supF M105(F) > 4 = 2/(1/2).
Andrew’s Sutherland’s table16 shows that

H = {0, 10, 12, 24, 28, 30, . . . , 594, 598, 600}

is the optimal admissible tuple of length 105, so

lim(pn+1 − pn) ≤ 600

holds under Bombieri–Vinogradov’s θ = 1
2 .

16https://math.mit.edu/~primegaps/
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James Maynard’s Dimensionality Reduction Attack

Appendix
After Maynard, the Polymath8b project is launched to improve his result to

lim
n→∞

(pn+1 − pn) ≤ 246.

Maynard originally showed that there exists some B1 > 0 such that for all m ∈ N

lim
n→∞

(pn+m − pn) ≤ B1m3e4m,

and the Polymath8b project improved this to

lim
n→∞

(pn+m − pn) ≤ B2me(4− 28
157)m

for some B2 > 0.
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James Maynard’s Dimensionality Reduction Attack
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