Introduction to *p*-adic Analysis

Travor Liu, May Jiang, Qing Su, Hantang Guo

Department of Mathematics University College London

28 February 2024

1/31

・ロト ・ 四ト ・ ヨト ・ ヨト

Table of Contents

- Introduction from polynomial
- Absolute values and completions
 - Completeness of real numbers
 - *p*-adic absolute values
- 3 Analysis in \mathbb{Q}_p
 - Convergence, continuity, and derivatives
 - Newton's method
 - Power series
 - Coding

> < = > < = >

Table of Contents

- 2 Absolute values and completions
- 3 Analysis in \mathbb{Q}_p

イロト イポト イヨト イヨト

Solve the equation

Solve $f(x) \equiv 0 \pmod{m}, m \in \mathbb{Z}$

Things to do:

• Factorise
$$m = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$$

2 Solve
$$f(x) \equiv 0 \pmod{p_i^{k_i}}$$
 $(i = 1, 2, ..., r)$

 $f(x) \equiv 0 \pmod{p}$

$$f(x) \equiv 0 \pmod{p^k}, \quad k \in \mathbb{Z}_{\geq 1}$$

э

イロト イポト イヨト イヨト

Solve the equation

Theorem (Chinese Remainder Theorem)

Set m_1, m_2, \ldots, m_s to be coprime $\mathbb{Z}_{\geq 1}$ Then for any integer b_1, b_2, \ldots, b_s , the linear congruence system

 $\begin{cases} x \equiv b_1 \pmod{m_1} \\ \vdots \\ x \equiv b_s \pmod{m_s} \end{cases}$

has a unique solution in $\mathbb{Z}/m\mathbb{Z}$, where $m = m_1m_2\cdots m_s$.

Absolute values and completions

Analysis in \mathbb{Q}_p

Hensel's lemma

Since $f(x) \equiv 0 \pmod{p^j} \Rightarrow f(x) \equiv 0 \pmod{p^{j-1}}$, so given $f(a) \equiv 0 \pmod{p^j}$, $f(x) \equiv 0 \pmod{p^{j+1}}$ can be solved via $x = a + tp^j$.

$$f(a + tp^{j}) = f(a) + tp^{j}f'(a) + \frac{t^{2}p^{2j}f''(a)}{2!} + \dots + \frac{t^{n}p^{nj}f^{(n)}(a)}{n!}$$

= $f(a) + tp^{j}f'(a) \pmod{p^{j+1}}$
 $\Rightarrow tf'(a) \equiv -f(a)p^{-j} \pmod{p}$

if f'(a) ≡ 0 (mod p), f(a + tp^j) ≡ f(a) (mod p^{j+1}) for all t.
if f(a) ≡ 0 (mod p^{j+1}), then t ∈ {0, 1, 2, ..., p - 1}.
if f(a) ≠ 0 (mod p^{j+1}), then no solution.

② if $f'(a) \neq 0 \pmod{p}$, there will be an unique solution

Hensel's lemma

Theorem (Hensel's lemma)

Suppose that f(x) is a polynomial with integer coefficients.

- If f(a) ≡ 0 (mod p^j) and f'(a) ≠ 0 (mod p), then there exists a unique t s.t. f(a + tp^j) ≡ 0 (mod p^{j+1})
- If f(a) ≡ 0 (mod p^j) and f'(a) ≡ 0 (mod p), then there exists p ways to lift the solution.

Hence, $a_{n+1} = a_n + t_n p^n$, and we can write the solution in forms of power series of *p*.

This expansion is invalid analytically, but makes a lot of sense number-theoretically.

Hensel example

Consider the polynomial $f(x) = x + 1 \equiv 0 \mod p^k$

• $x_1 = p - 1$

•
$$x_{k+1} = x_k + (p-1)p^k$$

Since f(-1) = 0, we should have

$$-1 = (p-1)p^0 + (p-1)p^1 + (p-1)p^2 \cdots$$

Right?

э

8/31

イロト 不得 トイヨト イヨト

Table of Contents

Introduction from polynomial

- 2 Absolute values and completions
 - Completeness of real numbers
 - *p*-adic absolute values
 - 3 Analysis in \mathbb{Q}_p

4 Coding

くぼう くほう くほう

Completeness of real numbers

Real numbers = Rational numbers + Completeness

- Least upper bound principle (requires <)</p>
- **2** Every Cauchy sequence converges (requires $|\cdot|$)

Definition (Cauchy sequence)

 $\{x_n\}$ is Cauchy iff

```
\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall m, n \in \mathbb{N} \quad (m, n > N \Longrightarrow |x_m - x_n| < \varepsilon)
```

If we define an absolute value differently, then we should obtain different completions of \mathbb{Q} using Cauchy sequences.

イロト イロト イヨト イヨト

Absolute values

Definition (Absolute values) $f : \mathbb{Q} \to \mathbb{R}$ is an absolute value iff • $f(x) \ge 0$ and f(x) = 0 iff x = 0• f(xy) = f(x)f(y)• $f(x+y) \le f(x) + f(y)$

We consider absolute values producing the same completion of \mathbb{Q} equivalent:

Definition (Equivalent absolute values)

Absolute values f, g are equivalent iff for all sequence $\{x_n\}$ and number L in \mathbb{Q} ,

$$\lim_{n \to +\infty} f(x_n - L) = 0 \iff \lim_{n \to +\infty} g(x_n - L) = 0$$

e.g. f(x) = |x| and $g(x) = |x|^{1/2}$ are equivalent.

11/31

Classification of absolute values

Theorem (Ostrowski)

Every absolute value on \mathbb{Q} is equivalent to exactly one of the following type:

- Trivial absolute value (Q): f(x) = $\begin{cases}
 0 & x = 0 \\
 1 & x \neq 0
 \end{cases}$ Archimedean absolute value (R): |x| = $\begin{cases}
 x & x \ge 0 \\
 -x & x < 0
 \end{cases}$
- p-adic absolute value (\mathbb{Q}_p) : $|x|_p = p^{-\nu_p(x)}$ for $x \neq 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

p-adic absolute values

Definition (*p*-adic valuation)

For prime p and all nonzero rational x, $v_p(x)$ is the unique integer m satisfying

$$x = p^m \frac{h}{k} \quad (p \nmid hk).$$

Definition (*p*-adic absolute value)

For prime *p*, we have

$$|x|_p = \begin{cases} 0 & x = 0\\ p^{-\nu_p(x)} & x \neq 0 \end{cases}$$

- $v_2(12) = 2$, $|12|_2 = 1/4$; $v_3(22/7) = 0$, $|22/7|_3 = 1$
- $v_p(xy) = v_p(x) + v_p(y); |x|_p \le 1 \text{ for all } x \in \mathbb{Z}$

Ultra-triangle inequality for $|x|_p$

For $x = p^a h_1/k_1$ and $y = p^b h_2/k_2$ such that $p \nmid h_1 h_2 k_1 k_2$ and $a \le b$, there is

$$x + y = \frac{p^a h_1 k_2 + p^b h_2 k_1}{k_1 k_2} = p^a \frac{h_1 k_2 + p^{b-a} h_2 k_1}{k_1 k_2}$$

Because $p^a h_1 k_2 + p^b h_2 k_1 \in \mathbb{Z}$, we have

$$\begin{aligned} |x+y|_p &= p^{-a} \frac{|h_1k_2 + p^{b-a}h_2k_1|_p}{|k_1k_2|_p} &= p^{-a}|h_1k_2 + p^{b-a}h_2k_1|_p\\ &\leq p^{-a} &= |x|_p. \end{aligned}$$

 $\Rightarrow |x + y|_p \le \max(|x|_p, |y|_p)$ (Non-Archimedean absolute value)

Table of Contents

3 Analysis in \mathbb{Q}_p

- Convergence, continuity, and derivatives
- Newton's method
- Power series

くぼう くほう くほう

Absolute values and completions

Analysis in \mathbb{Q}_p

Convergence

Definition (*p*-adic convergence)

$$\{x_n\} \in \mathbb{Q}_p \text{ converges to } L \in \mathbb{Q}_p \text{ iff } \lim_{n \to +\infty} |x_n - L|_p = 0.$$

When m > n, there is

$$\begin{aligned} |x_m - x_n|_p &\leq \max(|x_m - x_{m-1}|_p, |x_{m-1} - x_n|_p) \\ &\leq \max(|x_m - x_{m-1}|_p, |x_{m-1} - x_{m-2}|_p, |x_{m-2} - x_n|_p) \\ &\leq \cdots \leq \max_{n < k \le m} |x_k - x_{k-1}|_p. \end{aligned}$$

Theorem (*p*-adic Cauchy's criterion)

 $\{x_n\} \in \mathbb{Q}_p \text{ converges in } \mathbb{Q}_p \text{ iff } \lim_{n \to +\infty} |x_n - x_{n-1}|_p = 0. \text{ In other words, a series } \sum_n a_n \text{ converges in } \mathbb{Q}_p \text{ iff } \lim_{n \to +\infty} |a_n|_p = 0.$

э

・ロト ・ 四ト ・ ヨト ・ ヨト

p-adic expansions

Theorem

Every element $x \in \mathbb{Q}_p$ is uniquely expressed as

$$x = a_{-k}p^{-k} + a_{-k+1}p^{1-k} + \dots + a_{-1}p^{-1} + a_0 + a_1p + a_2p^2 + \dots$$

where $0 \le a_n < p$ for all n and $a_{-k} \ne 0$, so $|x|_p = p^k$.

Sanity check: Let

$$x_n = a_{-k}p^{-k} + a_{-k+1}p^{1-k} + \dots + a_{n-1}p^{n-1} + a_np^n$$

Then
$$|x_n - x_{n-1}|_p = |a_n p^n|_p \le |p^n|_p = p^{-n} \to 0.$$

Definition (*p*-adic integers)

 $\mathbb{Z}_p = \{ x \in \mathbb{Q}_p : |x|_p \le 1 \}.$

(1日) (1日) (日)

Continuity and differentiability

Definition (*p*-adic continuity)

 $f: \Omega \to \mathbb{Q}_p$ is continuous at $x \in \Omega$ iff $\lim_{y \to x} |f(y) - f(x)|_p = 0$.

Definition (*p*-adic derivative)

Let $f: \Omega \to \mathbb{Q}_p$, its derivative is defined as the *p*-adic limit

$$f'(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x}$$

Examples

Do we have a mean value theorem for \mathbb{Q}_p ?

Travor Liu, May Jiang, Qing Su, Hantang Guo

Failure of mean value theorem

Let $f : \mathbb{Z}_p \to \mathbb{Q}_p$ be defined such that when

$$x = a_0 + a_1 p + a_2 p^2 + a_3 p^3 + \dots,$$

there is

$$f(x) = a_0 + a_1 p^2 + a_2 p^4 + a_3 p^6 + \dots$$

Theorem (Properties of f)

f is a nonconstant function on \mathbb{Z}_p satisfying

•
$$f(x + y) = f(x) + f(y)$$
,

•
$$|f(x)|_p = |x|_p^2$$
,

•
$$f'(x) \equiv 0.$$

Due to the lack of MVT in \mathbb{Q}_p , we cannot study *p*-adic differentiable functions as in \mathbb{R} , so we focus on polynomials and power series.

Travor Liu, May Jiang, Qing Su, Hantang Guo

19/31

Equation solving in $\mathbb R$

Theorem (Newton's method)

Let $f: \Omega \to \mathbb{R}$ be differentiable. f(x) = 0 can be solved iteratively using

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad x_1 \in \Omega, \quad f'(x_1) \neq 0.$$

くぼう くほう くほう

Equation solving in \mathbb{Q}_p

Theorem (Hensel's lemma)

Let $f \in \mathbb{Z}_p[x]$. Suppose $\exists \alpha_1 \in \mathbb{Z}_p$ s.t. $|f(\alpha_1)| < 1$ and $|f'(\alpha_1)| = 1$.

$$\alpha_{n+1} = \alpha_n - \frac{f(\alpha_n)}{f'(\alpha_n)}, \quad n \ge 1$$

defines a convergent sequence whose limit $\alpha \in \mathbb{Z}_p$ is the unique *p*-adic integer such that $|\alpha - \alpha_1| < 1$ and $f(\alpha) = 0$.

3

Speeding up calculation

Theorem (Hensel's Lemma)

Let $f \in \mathbb{Z}_p[x]$ and $x_0 \in \mathbb{Z}_p$ s.t. $\nu_p(f'(x_0)) = c$ and $f(x_0) \equiv 0 \pmod{p^{2c+1}}$. Then, when

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

we have $v_p(f'(x_n)) = c$, $f(x_n) \equiv 0 \pmod{p^{2c+2^n}}$, and $x_{n+1} \equiv x_n \pmod{p^{c+2^n}}$ for all $n \in \mathbb{N}$.

3

Absolute values and completions

Analysis in \mathbb{Q}_p

Power series in \mathbb{Q}_p

Let $\langle a_n \rangle \in \mathbb{Q}_p$ be defined on $\mathbb{Z}_{\geq 0}$. Then

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

is a **power series** on \mathbb{Q}_p .

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots$$
$$\sqrt{1+x} = \sum_{n=0}^{\infty} {\binom{1}{2}}_n x^n = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots$$

イロト イポト イヨト イヨト

23/31

Radius of convergence

Theorem (Radius of convergence)

For
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, if $0 \le \rho \le \infty$ satisfies

$$\frac{1}{\rho} = \limsup_{n \to +\infty} \sqrt[n]{|a_n|_p},$$

then f(x) converges for all $|x|_p < \rho$ and diverges for all $|x|_p > \rho$.

Examples

Travor Liu, May Jiang, Qing Su, Hantang Guo

・ロト ・ 四ト ・ ヨト ・ ヨト

Convergence of exp(x)

Theorem (Legendre)

Let $n \in \mathbb{Z}_{\geq 1}$ be expanded as follows:

$$n = a_0 + a_1 p + a_2 p^2 + \dots + a_m p^m, \quad 0 \le a_k < p, \quad a_m \ne 0$$

and let $s_n = a_0 + a_1 + \dots + a_m$. Then $v_p(n!) = (n - s_n)/(p - 1)$.

$$0 \le s_n < p(m+1) \le p(\log_p n+1) \Rightarrow \frac{1 - \frac{p}{n}(\log_p n+1)}{p-1} < \frac{v_p(n!)}{n} \le \frac{1}{p-1}$$
$$\Rightarrow \lim_{n \to \infty} \frac{v_p(n!)}{n} = \frac{1}{p-1}$$
$$\rho^{-1} = \limsup_{n \to \infty} |1/n!|_p^{\frac{1}{n}} = \lim_{n \to \infty} p^{\frac{-v_p(\frac{1}{n!})}{n}} = \lim_{n \to \infty} p^{\frac{v_p(n!)}{n}} = p^{\frac{1}{p-1}} \Rightarrow \rho = p^{-\frac{1}{p-1}}.$$

Convergence of log(1 + x)

$$0 \le v_p(n) \le \log_p n \Rightarrow \lim_{n \to +\infty} \frac{v_p(n)}{n} = 0.$$
$$\rho^{-1} = \limsup_{n \to \infty} \left| \frac{(-1)^{n-1}}{n} \right|_p^{\frac{1}{n}} = \lim_{n \to \infty} p^{\frac{v_p(n)}{n}} = 1 \Rightarrow \rho = 1.$$

Theorem (*p*-adic Cauchy's criterion)

 $\sum_n b_n$ converges in \mathbb{Q}_p iff $\lim_{n \to +\infty} |b_n|_p = 0$.

When
$$b_n = \frac{(-1)^{n-1}x^n}{n}$$
 and $|x|_p = 1$, we have $|b_n|_p = |\frac{1}{n}|_p$.
 $|b_n|_p = p^{\nu_p(n)} \ge 1 \not\to 0 \Rightarrow \log(1+x)$ diverges when $|x|_p = 1$.

イロト イポト イヨト イヨト

э

Table of Contents

- Introduction from polynomial
- 2 Absolute values and completions
- 3 Analysis in \mathbb{Q}_p

イロト イポト イヨト イヨト

(1)

Sections of coding

Definition (Multiplicative inverse mod m)

Given some integer a, we wish to solve the equation

$$ab \equiv 1 \pmod{m}$$

Observe that (1) has a solution if and only if there exists integers b, k satisfying ab + km = 1, so we can be solve by Euclidean algorithm.

Definition (Fast powering algorithm)

When we only want to find the value $x^n \mod m$, it is a waste to compute x^n and then take $\mod m$. In order to be efficient, we hope to reduce the number of multiplications and increase the number of $\mod m$'s so that we will only multiply small numbers.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fast powering algorithm

```
def fast_power_modm(x,n,m):
    ret=1
    while n>0:
        if n%2!=0:
            ret=(ret*x) % m
            x=(x*x) % m
            n=n//2
    return ret % m
```

э

イロト イポト イヨト イヨト

Solutions of $f(x) = x^2 + x + 223 \equiv 0 \pmod{3^5}$

The *k*'th layer solves $f(x) \equiv 0 \pmod{p^k}$.

(日)

Bibliography

Fernando Q. Gouvêa (2020).

p-adic Numbers: An Introduction (3rd ed.)

Keith Conrad.

Hensel's lemma

https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf

Keith Conrad.

Infinite series in p-adic fields

https://kconrad.math.uconn.edu/blurbs/gradnumthy/infseriespadic.pdf

👂 Travor Liu.

Absolute values and Ostrowski's theorem

https://travorlzh.github.io/2023/05/11/
absolute-values-and-ostrowskys-theorem.html

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >