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Remarks on Lp spaces

Definition 1

Let 1 ≤ p < ∞. The space Lp(R) is the space of equivalence
classes of functions that satisfy∫ ∞

−∞
|f |pdx < ∞

where two functions are equivalent if they differ only in a set of
Lebesgue measure zero.

Example 2

Let f (x) = 1
x and g(x) = e−

x2

2 . Then f /∈ L1(R), but
f ∈ L2([1,∞)). However, g ∈ Lp(R) for all 1 ≤ p < ∞.
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What are Fourier transforms?

Definition 3

Let f ∈ L1. Its Fourier transform is given by

f̂ (ξ) :=
1√
2π

∫ ∞

−∞
e−ixξf (x)dx =: F [f ]. (1)

Other common definitions: f̂ (ξ) =
∫∞
−∞ e−ixξf (x)dx ,

f̂ (ξ) =
∫∞
−∞ e−2πixξf (x)dx .

Can be thought as the linear combination of an odd and even
transform.

If f is smooth one can integrate by parts. Can be hard to
solve by hand otherwise.

Nice identity: If g(x) = e−
x2

2 , then ĝ(ξ) = e−
ξ2

2 .
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Properties of Fourier transform

1 Let f , g ∈ L1. Then F [f ∗ g ] =
√
2πf̂ ĝ where

(f ∗ g)(x) =
∫ ∞

−∞
f (x − y)g(y)dy

is the convolution operator. In particular, f ∗ g ∈ L1.

2 Let f , g ∈ L1. Then
∫∞
−∞ f ĝ =

∫∞
−∞ f̂ g .

3 Let f ∈ L1. Then for all a ∈ R, F [f (x + y)], F [e ixy f (x)] and
F [f (ax)] exist. Moreover, F [f (x + y)] = e iξy f̂ (ξ),

F [e ixy f (x)] = f̂ (ξ − y) and F [f (ax)] = 1
|a| f̂

(
ξ
a

)
.
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Riemann-Lebesgue lemma

A very nice result regarding Fourier transforms is the
Riemann-Lebesgue lemma.

Lemma 4

(Riemann-Lebesgue.) Let f ∈ L1. Then

1 f̂ is continuous

2 lim|ξ|→∞ f̂ (ξ) = 0

3 fj → f in L1 =⇒ f̂j → f̂ uniformly on R.

Here fj → f in L1 means that ∀ϵ > 0 ∃N > 0 such that

j > N =⇒
∫∞
−∞ |fj − f | < ϵ, and f̂j → f̂ uniformly means that

∀ϵ > 0 ∃N > 0 such that j > N =⇒ supx∈R |f̂j − f̂ | < ϵ.
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Fourier inversion

Question: Does the Fourier transform have an inverse operation?
If so, can we find an explicit representation for this inverse?
Answer: Yes and yes.

Definition 5

Let f ∈ L1 such that f̂ ∈ L1 as well. Then we have

f (x) =
1√
2π

∫ ∞

−∞
e ixξ f̂ (ξ)dξ. (2)

The inverse Fourier transform of f is denoted by f̌ . It is also
denoted by F−1[f ].

Question: Let f ∈ L1. Does the expression F−1(F [f ]) always
make sense?
Answer: No, as C0(R) ⊈ L1(R): Consider 1

log(|x |+2) . Hence the

Riemann-Lebesgue lemma does not guarantee f̂ ∈ L1.
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The Schwartz space

Definition 6

A function f belongs to the Schwartz space S(R) if f ∈ C∞(R)
and supx |xα dβ

dxβ
f (x)| < ∞ for all α, β = 0, 1, 2, . . ..

The Schwartz space is non-trivial, as it contains every C∞-function
on R that has compact support, i.e. functions that vanish outside

a closed interval. Alternatively, consider g(x) = e−
x2

2 .

Theorem 7

Given f ∈ Lp, there exists a sequence {ϕn} ⊂ S such that for all
ϵ > 0 there exists N > 0 such that n > N =⇒ sup |f − ϕn| < ϵ.

Hence it is enough to consider Fourier transforms in S, as we can
take p = 1.
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The Schwartz space

Theorem 8

ϕ ∈ S =⇒ ϕ̂ ∈ S.

Theorem 9

Let f ∈ S. Then F [ d
k

dxk
f (x)] = ξk f̂ (ξ), dk

dxk
f̂ (ξ) = F [(−x)k f (x)].

Theorem 10

Let f ∈ S. Then

f (x) = (2π)−
n
2

∫
Rn

e ixξ f̂ (ξ)dξ.

and the expression ˇ̂f = f makes sense. In particular, we can say
that the map F : S → S is a isomorphism.
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Remarks on L2

The space L2(R) contains (equivalence classes of)
square-integrable functions f satisfying

∫∞
−∞ |f |2dx < ∞. It is a

Hilbert space under the inner product

(f , g) :=

∫ ∞

−∞
f ḡdx

where the bar denotes the complex conjugate. (Think as a
continuous analogue of dot products.)

Definition 11

Let f ∈ L2. It has L2−norm

||f ||2 := (f , f )
1
2 =

(∫ ∞

−∞
|f |2dx

) 1
2

.
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Plancherel’s theorem

A very important identity:

Theorem 12

(Plancherel, 1910.) If f ∈ L1(R) ∩ L2(R), then ||f ||2 = ||f̂ ||2.

Informally, this already tells us that the Fourier transform is an
unitary operator on L2.
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Operators on L2

An operator T on L2 maps a square-integrable function to another.

Example 13

The operator T given by Tf = 1
x2+1

f is an operator on L2.

If

sup
f ∈L2

||Tf ||2
||f ||2

< ∞

then T is a bounded operator on L2.

Example 14

The above operator is bounded as

[
sup
f ∈L2

||Tf ||2
||f ||2

]2
=

∫∞
−∞

|f |2
(x2+1)2

dx∫∞
−∞ |f |2dx

≤
∫∞
−∞ |f |2dx∫∞
−∞ |f |2dx

= 1.
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Unitary operators

Definition 15

Let T be an invertible bounded operator on L2. Its inverse
T−1 : L2 → L2 satisfies TT−1 = T−1T = Id. Here Id is the
identity operator Id : L2 → L2, Id(f ) = f .

Definition 16

Let T be a bounded operator on L2 with inverse T−1. Its adjoint
T ∗ is given by

(Tf , g) = (f ,T ∗g) where f , g ∈ L2.

If T = T ∗, we call T a self-adjoint operator. If T ∗ = T−1, i.e.
TT ∗ = T ∗T = Id, then T is a unitary operator.
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Fourier transforms as unitary operators

Theorem 17

The Fourier transform defined in (1) is a unitary operator on L2.

Proof.

First suppose f , g ∈ S and equip S with the same inner product
(f , g) =

∫∞
−∞ f ḡdx as L2. Then

(F f ,Fg) =

∫ ∞

−∞
f̂ ĝ dx =

∫ ∞

−∞
f̂ ǧ dx

=

∫ ∞

−∞
f F

[
ǧ
]
dx =

∫ ∞

−∞
f gdx = (f , g).

Replace Fg by g gives (F f , g) = (f ,F−1g), so F∗ = F−1. By
Theorem 7 the result can be extended to L2.
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Fourier transforms as unitary operators

Remark 1

Why do we have ĝ = ǧ ?

Proof.

ĝ(ξ) =
1√
2π

∫ ∞

−∞
e−ixξg(x)dx .

Call a(x) + ib(x) := e−ixξg(x). Then

1√
2π

∫ ∞

−∞
e−ixξg(x)dx =

1√
2π

∫ ∞

−∞
a(x) + ib(x)dx

=
1√
2π

(∫ ∞

−∞
a(x)dx − i

∫ ∞

−∞
b(x)dx

)
=

1√
2π

∫ ∞

−∞
e ixξg(x)dx

which is exactly ǧ(ξ).
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