An introduction to the theory of Fourier transforms

Benjamin Yang
University College London, Department of Mathematics

UCL Undergraduate Mathematics Colloquium, October 2023

Remarks on L^{p} spaces

Definition 1

Let $1 \leq p<\infty$. The space $L^{p}(\mathbb{R})$ is the space of equivalence classes of functions that satisfy

$$
\int_{-\infty}^{\infty}|f|^{p} d x<\infty
$$

where two functions are equivalent if they differ only in a set of Lebesgue measure zero.

Example 2

Let $f(x)=\frac{1}{x}$ and $g(x)=e^{-\frac{x^{2}}{2}}$. Then $f \notin L^{1}(\mathbb{R})$, but $f \in L^{2}([1, \infty))$. However, $g \in L^{p}(\mathbb{R})$ for all $1 \leq p<\infty$.

What are Fourier transforms?

Definition 3

Let $f \in L^{1}$. Its Fourier transform is given by

$$
\begin{equation*}
\hat{f}(\xi):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i x \xi} f(x) d x=: \mathcal{F}[f] \tag{1}
\end{equation*}
$$

- Other common definitions: $\hat{f}(\xi)=\int_{-\infty}^{\infty} e^{-i x \xi} f(x) d x$, $\hat{f}(\xi)=\int_{-\infty}^{\infty} e^{-2 \pi i x \xi} f(x) d x$.
- Can be thought as the linear combination of an odd and even transform.
- If f is smooth one can integrate by parts. Can be hard to solve by hand otherwise.
- Nice identity: If $g(x)=e^{-\frac{x^{2}}{2}}$, then $\hat{g}(\xi)=e^{-\frac{\xi^{2}}{2}}$.

Properties of Fourier transform

(1) Let $f, g \in L^{1}$. Then $\mathcal{F}[f * g]=\sqrt{2 \pi} \hat{f} \hat{g}$ where

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

is the convolution operator. In particular, $f * g \in L^{1}$.
(2) Let $f, g \in L^{1}$. Then $\int_{-\infty}^{\infty} f \hat{g}=\int_{-\infty}^{\infty} \hat{f} g$.
(3) Let $f \in L^{1}$. Then for all $a \in \mathbb{R}, \mathcal{F}[f(x+y)], \mathcal{F}\left[e^{i x y} f(x)\right]$ and $\mathcal{F}[f(a x)]$ exist. Moreover, $\mathcal{F}[f(x+y)]=e^{i \xi y} \hat{f}(\xi)$,
$\mathcal{F}\left[e^{i x y} f(x)\right]=\hat{f}(\xi-y)$ and $\mathcal{F}[f(a x)]=\frac{1}{|a|} \hat{f}\left(\frac{\xi}{a}\right)$.

Riemann-Lebesgue lemma

A very nice result regarding Fourier transforms is the Riemann-Lebesgue lemma.

Lemma 4

(Riemann-Lebesgue.) Let $f \in L^{1}$. Then
(1) \hat{f} is continuous
(2) $\lim _{|\xi| \rightarrow \infty} \hat{f}(\xi)=0$
(3) $f_{j} \rightarrow f$ in $L^{1} \Longrightarrow \hat{f}_{j} \rightarrow \hat{f}$ uniformly on \mathbb{R}.

Here $f_{j} \rightarrow f$ in L^{1} means that $\forall \epsilon>0 \exists N>0$ such that
$j>N \Longrightarrow \int_{-\infty}^{\infty}\left|f_{j}-f\right|<\epsilon$, and $\hat{f}_{j} \rightarrow \hat{f}$ uniformly means that $\forall \epsilon>0 \exists N>0$ such that $j>N \Longrightarrow \sup _{x \in \mathbb{R}}\left|\hat{f}_{j}-\hat{f}\right|<\epsilon$.

Fourier inversion

Question: Does the Fourier transform have an inverse operation? If so, can we find an explicit representation for this inverse? Answer: Yes and yes.

Definition 5

Let $f \in L^{1}$ such that $\hat{f} \in L^{1}$ as well. Then we have

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i x \xi} \hat{f}(\xi) d \xi \tag{2}
\end{equation*}
$$

The inverse Fourier transform of f is denoted by \check{f}. It is also denoted by $\mathcal{F}^{-1}[f]$.

Question: Let $f \in L^{1}$. Does the expression $\mathcal{F}^{-1}(\mathcal{F}[f])$ always make sense?
Answer: No, as $C_{0}(\mathbb{R}) \nsubseteq L^{1}(\mathbb{R})$: Consider $\frac{1}{\log (|x|+2)}$. Hence the Riemann-Lebesgue lemma does not guarantee $\hat{f} \in L^{1}$.

The Schwartz space

Definition 6

A function f belongs to the Schwartz space $\mathcal{S}(\mathbb{R})$ if $f \in C^{\infty}(\mathbb{R})$ and $\sup _{x}\left|x^{\alpha} \frac{d^{\beta}}{d x^{\beta}} f(x)\right|<\infty$ for all $\alpha, \beta=0,1,2, \ldots$.

The Schwartz space is non-trivial, as it contains every C^{∞}-function on \mathbb{R} that has compact support, i.e. functions that vanish outside a closed interval. Alternatively, consider $g(x)=e^{-\frac{x^{2}}{2}}$.

Theorem 7

Given $f \in L^{p}$, there exists a sequence $\left\{\phi_{n}\right\} \subset \mathcal{S}$ such that for all $\epsilon>0$ there exists $N>0$ such that $n>N \Longrightarrow \sup \left|f-\phi_{n}\right|<\epsilon$.

Hence it is enough to consider Fourier transforms in \mathcal{S}, as we can take $p=1$.

The Schwartz space

Theorem 8
$\phi \in \mathcal{S} \Longrightarrow \hat{\phi} \in \mathcal{S}$.

Theorem 9

Let $f \in \mathcal{S}$. Then $\mathcal{F}\left[\frac{d^{k}}{d x^{k}} f(x)\right]=\xi^{k} \hat{f}(\xi), \frac{d^{k}}{d x^{k}} \hat{f}(\xi)=\mathcal{F}\left[(-x)^{k} f(x)\right]$.

Theorem 10

Let $f \in \mathcal{S}$. Then

$$
f(x)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{i x \xi} \hat{f}(\xi) d \xi
$$

and the expression $\check{\hat{f}}=f$ makes sense. In particular, we can say that the map $\mathcal{F}: \mathcal{S} \rightarrow \mathcal{S}$ is a isomorphism.

Remarks on L^{2}

The space $L^{2}(\mathbb{R})$ contains (equivalence classes of) square-integrable functions f satisfying $\int_{-\infty}^{\infty}|f|^{2} d x<\infty$. It is a Hilbert space under the inner product

$$
(f, g):=\int_{-\infty}^{\infty} f \bar{g} d x
$$

where the bar denotes the complex conjugate. (Think as a continuous analogue of dot products.)

Definition 11

Let $f \in L^{2}$. It has L^{2}-norm

$$
\|f\|_{2}:=(f, f)^{\frac{1}{2}}=\left(\int_{-\infty}^{\infty}|f|^{2} d x\right)^{\frac{1}{2}}
$$

Plancherel's theorem

A very important identity:

Theorem 12

(Plancherel, 1910.) If $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$, then $\|f\|_{2}=\|\hat{f}\|_{2}$.
Informally, this already tells us that the Fourier transform is an unitary operator on L^{2}.

Operators on L^{2}

An operator T on L^{2} maps a square-integrable function to another.

Example 13

The operator T given by $T f=\frac{1}{x^{2}+1} f$ is an operator on L^{2}.
If

$$
\sup _{f \in L^{2}} \frac{\|T f\|_{2}}{\|f\|_{2}}<\infty
$$

then T is a bounded operator on L^{2}.

Example 14

The above operator is bounded as

$$
\left[\sup _{f \in L^{2}} \frac{\|T f\|_{2}}{\|f\|_{2}}\right]^{2}=\frac{\int_{-\infty}^{\infty} \frac{|f|^{2}}{\left(x^{2}+1\right)^{2}} d x}{\int_{-\infty}^{\infty}|f|^{2} d x} \leq \frac{\int_{-\infty}^{\infty}|f|^{2} d x}{\int_{-\infty}^{\infty}|f|^{2} d x}=1
$$

Unitary operators

Definition 15

Let T be an invertible bounded operator on L^{2}. Its inverse $T^{-1}: L^{2} \rightarrow L^{2}$ satisfies $T T^{-1}=T^{-1} T=\mathrm{Id}$. Here Id is the identity operator Id: $L^{2} \rightarrow L^{2}, \operatorname{Id}(f)=f$.

Definition 16

Let T be a bounded operator on L^{2} with inverse T^{-1}. Its adjoint T^{*} is given by

$$
(T f, g)=\left(f, T^{*} g\right) \text { where } f, g \in L^{2}
$$

If $T=T^{*}$, we call T a self-adjoint operator. If $T^{*}=T^{-1}$, i.e. $T T^{*}=T^{*} T=\mathrm{Id}$, then T is a unitary operator.

Fourier transforms as unitary operators

Theorem 17

The Fourier transform defined in (1) is a unitary operator on L2.

Proof.

First suppose $f, g \in \mathcal{S}$ and equip \mathcal{S} with the same inner product $(f, g)=\int_{-\infty}^{\infty} f \bar{g} d x$ as L^{2}. Then

$$
\begin{aligned}
& (\mathcal{F} f, \mathcal{F} g)=\int_{-\infty}^{\infty} \hat{f} \overline{\hat{g}} d x=\int_{-\infty}^{\infty} \hat{f} \underline{g} d x \\
= & \int_{-\infty}^{\infty} f \mathcal{F}[\check{g}] d x=\int_{-\infty}^{\infty} f \bar{g} d x=(f, g) .
\end{aligned}
$$

Replace $\mathcal{F} g$ by g gives $(\mathcal{F} f, g)=\left(f, \mathcal{F}^{-1} g\right)$, so $\mathcal{F}^{*}=\mathcal{F}^{-1}$. By Theorem 7 the result can be extended to L^{2}.

Fourier transforms as unitary operators

Remark 1

Why do we have $\overline{\hat{g}}=\check{g}$?

Proof.

$$
\overline{\hat{g}}(\xi)=\overline{\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i x \xi} g(x) d x}
$$

Call $a(x)+i b(x):=e^{-i x \xi} g(x)$. Then

$$
\begin{gathered}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i x \xi} g(x) d x
\end{gathered}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} a(x)+i b(x) d x ~\left(~=\frac{1}{\sqrt{2 \pi}}\left(\int_{-\infty}^{\infty} a(x) d x-i \int_{-\infty}^{\infty} b(x) d x\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i x \xi} \overline{g(x)} d x .\right.
$$

which is exactly $\check{g}(\xi)$.

