An introduction to the theory of Fourier transforms

Benjamin Yang

University College London, Department of Mathematics

UCL Undergraduate Mathematics Colloquium, October 2023

Definition 1

Let $1 \le p < \infty$. The space $L^p(\mathbb{R})$ is the space of equivalence classes of functions that satisfy

$$\int_{-\infty}^{\infty} |f|^p dx < \infty$$

where two functions are equivalent if they differ only in a set of Lebesgue measure zero.

Example 2

Let
$$f(x) = \frac{1}{x}$$
 and $g(x) = e^{-\frac{x^2}{2}}$. Then $f \notin L^1(\mathbb{R})$, but $f \in L^2([1,\infty))$. However, $g \in L^p(\mathbb{R})$ for all $1 \le p < \infty$.

Definition 3

Let $f \in L^1$. Its Fourier transform is given by

$$\hat{f}(\xi) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ix\xi} f(x) dx =: \mathcal{F}[f].$$
(1)

• Other common definitions:
$$\hat{f}(\xi) = \int_{-\infty}^{\infty} e^{-ix\xi} f(x) dx$$
,
 $\hat{f}(\xi) = \int_{-\infty}^{\infty} e^{-2\pi ix\xi} f(x) dx$.

- Can be thought as the linear combination of an odd and even transform.
- If f is smooth one can integrate by parts. Can be hard to solve by hand otherwise.

• Nice identity: If
$$g(x) = e^{-\frac{x^2}{2}}$$
, then $\hat{g}(\xi) = e^{-\frac{\xi^2}{2}}$.

• Let $f,g \in L^1$. Then $\mathcal{F}[f * g] = \sqrt{2\pi} \hat{f} \hat{g}$ where

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy$$

is the convolution operator. In particular, $f * g \in L^1$.

- **2** Let $f,g \in L^1$. Then $\int_{-\infty}^{\infty} f\hat{g} = \int_{-\infty}^{\infty} \hat{f}g$.
- Solution Let f ∈ L¹. Then for all a ∈ ℝ, F[f(x + y)], F[e^{ixy}f(x)] and F[f(ax)] exist. Moreover, F[f(x + y)] = e^{iξy}f(ξ), F[e^{ixy}f(x)] = f(ξ y) and F[f(ax)] = ¹/_{|a|}f(^ξ/_a).

A very nice result regarding Fourier transforms is the *Riemann-Lebesgue lemma*.

Lemma 4

(Riemann-Lebesgue.) Let $f \in L^1$. Then

2
$$\lim_{|\xi|\to\infty} \hat{f}(\xi) = 0$$

3
$$f_j o f$$
 in $L^1 \implies \hat{f}_j o \hat{f}$ uniformly on \mathbb{R} .

Here $f_j \to f$ in L^1 means that $\forall \epsilon > 0 \ \exists N > 0$ such that $j > N \implies \int_{-\infty}^{\infty} |f_j - f| < \epsilon$, and $\hat{f}_j \to \hat{f}$ uniformly means that $\forall \epsilon > 0 \ \exists N > 0$ such that $j > N \implies \sup_{x \in \mathbb{R}} |\hat{f}_j - \hat{f}| < \epsilon$.

Fourier inversion

Question: Does the Fourier transform have an inverse operation? If so, can we find an explicit representation for this inverse? Answer: Yes and yes.

Definition 5

Let $f \in L^1$ such that $\hat{f} \in L^1$ as well. Then we have

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ix\xi} \hat{f}(\xi) d\xi.$$
(2)

The inverse Fourier transform of f is denoted by \check{f} . It is also denoted by $\mathcal{F}^{-1}[f]$.

Question: Let $f \in L^1$. Does the expression $\mathcal{F}^{-1}(\mathcal{F}[f])$ always make sense? Answer: No, as $C_0(\mathbb{R}) \nsubseteq L^1(\mathbb{R})$: Consider $\frac{1}{\log(|x|+2)}$. Hence the Riemann-Lebesgue lemma does not guarantee $\hat{f} \in L^1$.

The Schwartz space

Definition 6

A function f belongs to the Schwartz space $\mathcal{S}(\mathbb{R})$ if $f \in C^{\infty}(\mathbb{R})$ and $\sup_{x} |x^{\alpha} \frac{d^{\beta}}{dx^{\beta}} f(x)| < \infty$ for all $\alpha, \beta = 0, 1, 2, \ldots$

The Schwartz space is non-trivial, as it contains every C^{∞} -function on \mathbb{R} that has compact support, i.e. functions that vanish outside a closed interval. Alternatively, consider $g(x) = e^{-\frac{x^2}{2}}$.

Theorem 7

Given $f \in L^p$, there exists a sequence $\{\phi_n\} \subset S$ such that for all $\epsilon > 0$ there exists N > 0 such that $n > N \implies \sup |f - \phi_n| < \epsilon$.

Hence it is enough to consider Fourier transforms in S, as we can take p = 1.

The Schwartz space

Theorem 8

$$\phi \in \mathcal{S} \implies \hat{\phi} \in \mathcal{S}.$$

Theorem 9

Let
$$f \in S$$
. Then $\mathcal{F}[\frac{d^k}{dx^k}f(x)] = \xi^k \hat{f}(\xi), \ \frac{d^k}{dx^k}\hat{f}(\xi) = \mathcal{F}[(-x)^k f(x)].$

Theorem 10

Let $f \in S$. Then

$$f(x)=(2\pi)^{-\frac{n}{2}}\int_{\mathbb{R}^n}e^{ix\xi}\hat{f}(\xi)d\xi.$$

and the expression $\check{f} = f$ makes sense. In particular, we can say that the map $\mathcal{F} : \mathcal{S} \to \mathcal{S}$ is a isomorphism.

Remarks on L^2

The space $L^2(\mathbb{R})$ contains (equivalence classes of) square-integrable functions f satisfying $\int_{-\infty}^{\infty} |f|^2 dx < \infty$. It is a Hilbert space under the inner product

$$(f,g):=\int_{-\infty}^{\infty}f\bar{g}dx$$

where the bar denotes the complex conjugate. (Think as a continuous analogue of dot products.)

Definition 11

Let $f \in L^2$. It has L^2 -norm

$$||f||_2 := (f, f)^{\frac{1}{2}} = \left(\int_{-\infty}^{\infty} |f|^2 dx\right)^{\frac{1}{2}}$$

A very important identity:

Theorem 12

(Plancherel, 1910.) If $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, then $||f||_2 = ||\hat{f}||_2$.

Informally, this already tells us that the Fourier transform is an *unitary operator* on L^2 .

Operators on L^2

An operator T on L^2 maps a square-integrable function to another.

Example 13

lf

The operator T given by
$$Tf = \frac{1}{x^2+1}f$$
 is an operator on L^2 .

$$\sup_{f \in L^2} \frac{||Tf||_2}{||f||_2} < \infty$$

then T is a bounded operator on L^2 .

Example 14

The above operator is bounded as

$$\left[\sup_{f\in L^2}\frac{||Tf||_2}{||f||_2}\right]^2 = \frac{\int_{-\infty}^{\infty}\frac{|f|^2}{(x^2+1)^2}dx}{\int_{-\infty}^{\infty}|f|^2dx} \le \frac{\int_{-\infty}^{\infty}|f|^2dx}{\int_{-\infty}^{\infty}|f|^2dx} = 1.$$

Definition 15

Let T be an invertible bounded operator on L^2 . Its inverse $T^{-1}: L^2 \to L^2$ satisfies $TT^{-1} = T^{-1}T = Id$. Here Id is the identity operator Id : $L^2 \to L^2$, Id(f) = f.

Definition 16

Let T be a bounded operator on L^2 with inverse T^{-1} . Its adjoint T^* is given by

$$(Tf,g) = (f, T^*g)$$
 where $f, g \in L^2$.

If $T = T^*$, we call T a self-adjoint operator. If $T^* = T^{-1}$, i.e. $TT^* = T^*T = Id$, then T is a unitary operator.

Theorem 17

The Fourier transform defined in (1) is a unitary operator on L^2 .

Proof.

First suppose $f, g \in S$ and equip S with the same inner product $(f, g) = \int_{-\infty}^{\infty} f \bar{g} dx$ as L^2 . Then

$$(\mathcal{F}f,\mathcal{F}g) = \int_{-\infty}^{\infty} \hat{f}\overline{\hat{g}}dx = \int_{-\infty}^{\infty} \hat{f}\overline{\hat{g}}dx$$

$$=\int_{-\infty}^{\infty}f\mathcal{F}\left[\check{\overline{g}}\right]dx=\int_{-\infty}^{\infty}f\overline{g}dx=(f,g).$$

Replace $\mathcal{F}g$ by g gives $(\mathcal{F}f, g) = (f, \mathcal{F}^{-1}g)$, so $\mathcal{F}^* = \mathcal{F}^{-1}$. By Theorem 7 the result can be extended to L^2 .

Fourier transforms as unitary operators

Remark 1

Why do we have $\overline{\hat{g}} = \check{\overline{g}}$?

Proof.

$$\overline{\hat{g}}(\xi) = \overline{rac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-ix\xi}g(x)dx}.$$

Call $a(x) + ib(x) := e^{-ix\xi}g(x)$. Then

$$\overline{\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-ix\xi}g(x)dx}=\frac{1}{\sqrt{2\pi}}\overline{\int_{-\infty}^{\infty}a(x)+ib(x)dx}$$

$$=\frac{1}{\sqrt{2\pi}}\left(\int_{-\infty}^{\infty}a(x)dx-i\int_{-\infty}^{\infty}b(x)dx\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{ix\xi}\overline{g(x)}dx$$

which is exactly $\check{\overline{g}}(\xi)$.