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Abstract

This talk will be on the PageRank algorithm, which is used to rank the relative
importance of webpages. It is largely influential, and has a lot to do with the
success of Google search engine. This talk will focus on the Mathematical
aspect of the algorithm, which can be viewed as an application of Markov
chain and eigendecomposition. It is self-contained and requires no
prerequisite, but it would be helpful to have some knowledge of discrete-time
Markov chain and eigendecomposition of a matrix.

Zhang Ruiyang (UCL) The Algorithm of Google 18 Oct 2021 2 / 16



Goal

A computationally fast way to rank the relative importance of webpages, so
we know what to return first after a search.
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Observations of Webpages

Webpages have links

Links have directions

Links on important pages are important

Easy to manipulate webpages

(Sink pages)
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A Model of the Question
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Definition of Markov Chain (1)

State space � is a countable set with each 8 ∈ � as a possible state. It is
countable since we are working with discrete-time.

Distribution on � is a collection _ = (_8 , 8 ∈ �) with _8 for all 8, and∑
_8 = 1 due to normality.

Working in the probability space (Ω, F , P): sample space Ω, events F
and probability measure P.

For a random variable - : Ω→ �, we have _8 = P(- = 8).

Stochastic matrix % = (?8 9 : 8, 9 ∈ �) with every row (?8 9 : 9 ∈ �) being
a distribution. ?8 9 here denotes the probability of going from state 8 to
state 9 . (Not to be confused with the probability measure P)
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Definition of Markov Chain (2)

(-=)=≥0 is a Markov chain with initial distribution _ and transition matrix
% if for = ≥ 0 and 80, . . . , 8=+1 ∈ �, we have

(1) P(-0 = 80) = _80

(2) P(-=+1 = 8=+1 |-0 = 80, . . . , -= = 8=) = ?8=8=+1

which we will then call it Markov(_, %) in short.

For any particular combination of positions of states -0 to -# for an integer
# ,

P(-0 = 80, . . . , -# = 8# )
= P(-0 = 80)P(-1 = 81 |-0 = 80) · · · P(-# = 8# , |-0 = 80 . . . , -#−1 = 8#−1)
= _80 ?8081 · · · ?8#−18# .

Zhang Ruiyang (UCL) The Algorithm of Google 18 Oct 2021 7 / 16



Example of a Markov Chain

The state space � is {1, 2, 3}, and let the initial distribution be _ = ( 13 ,
1
3 ,
1
3 ).

For example, using the diagram, we can get

P(-0 = 1, -1 = 3, -2 = 3, -3 = 2)
= P(-0 = 1)P(-1 = 3|-0 = 1)P(-2 = 3|-1 = 3)P(-3 = 2|-2 = 3)

=
1
3
× 1 × 2

3
× 1
3
=
2
27
.
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Markov Property

Property of “memoryless" - the past does not depend on the future, only the
current state does.

Let (-=)=≥0 be Markov(_, %). Then, condition on -< = 8, (-<+=)=≥0 is
Markov(X8 , %) and is independent of the random variables -0, . . . , -< where
X8 = (X8 9 : 9 ∈ �) is the unit mass at 8 where X8 9 = 1 if 8 = 9 and 0 otherwise.
Equivalently,

P(-=+1 = 8=+1 |-0 = 80, . . . , -= = 8=) = P(-=+1 = 8=+1 |-= = 8=) = ?8=8=+1 .

“Life is like a Markov chain, your future only depends on what you are
doing now, and independent of your past.”
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Transition over Multiple Steps

The probability of going from state 8 and get to state 9 in two steps is∑
:∈�

?8: ?: 9 .

Using some knowledge from Linear Algebra, we can summarise all two-step
transitions using %2 of the stochastic matrix %. This can be extended to =-step
transition of %=.

Question: How would this matrix %= look like, as =→∞?
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Eigendecomposition of a Matrix

For = × = matrix � and some = × 1 vector G, �G = _G of some scalar _. Such _
will be called an eigenvalue, and the vector G will be its corresponding
eigenvector.

For eigenvalues _1, _2, · · · , _= of � and the corresponding eigenvectors
E1, E2, · · · , E=, we will have the eigenmatrix & = [E1 E2 · · · E=] and a
diagonal matrix Λ with the eigenvalues _1, _2, · · · , _= on its diagonal, we
would have � = &Λ&−1, the eigendecomposition of �.

One amazing property: �: = &Λ:&−1, while Λ: is a diagonal matrix with
_:1 , _

:
2 , · · · , _

:
= on its diagonal.
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Example

21

0.8

0.2

0.7

0.3

Here, the transition matrix is % =
(
0.2 0.8
0.7 0.3

)
. Its two eigenvalues are 1 and

−0.5, so we have % = &
(
1 0
0 −0.5

)
&−1, and %= = &

(
1= 0
0 (−0.5)=

)
&−1 of

some eigenmatrix &.

Thus, lim=→∞ %= = &
(
1 0
0 0

)
&−1 =

(
7/15 8/15
7/15 8/15

)
, which indicates the

equilibrium distribution of the chain.
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PageRank

Assume we have = webpages �1, �2, · · · , �=. If �1 has links directing to �2 and
�3, a random surfer of the internet will have 50% chance of going to �2, and
50% chance of going to �3, just like a Markov chain. So, we can construct a
transition matrix % of = webpages in that way, and the equilibrium distribution
will offer us a ranking of the relative importance of pages.

In the previous example of two states, we have the equilibrium distribution
(7/15 8/15)) , meaning that we will be at State 1 for 7/15 of the time and at
State 2 for the remaining 8/15. Then, we say that State 2 is a more important
page than State 1.

Wait a second ... Will this always work?
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PageRank

Sink pages.

To make sure an equilibrium distribution exists, we will introduce a damping
factor, so there is some chance for the random surfer to leave the current page
and go to any other pages (with equal probability). This way, we will always
have an equilibrium distribution.
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Extensions

A more elaborated discussions on when a matrix can be
eigendecomposed

Other metrics to rank pages

Other applications of eigendecomposition

Can we ‘eigendecompose’ things other than matrix?
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