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Preliminary remarks

Ω ⊂ Rn is an open, bounded, connected subset. Ω has
boundary ∂Ω and its closure is denoted by Ω.

∆ = Laplacian. More generally, L =
∑

|α|≤n aα(x)∂
α is a

differential operator. Here α = (α1, . . . , αn) is some
multi-index.

The space of n−times continuously differentiable functions in
Ω is denoted by Cn(Ω). The space of n−times uniformly
continuously differentiable functions in Ω is denoted by Cn(Ω).
All derivatives are in the classical sense.
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Comments on harmonic functions

Definition 1

A function u ∈ C 2(Ω) is harmonic if ∆u = 0 in Ω.

Some examples:

Let f (z) = f (x , y) be an entire function. Then its real part
ℜ(f ) and imaginary part ℑ(f ) are both harmonic on R2.

For inviscid incompressible planar flow, the governing equation
for the streamfunction ψ and the velocity potential ϕ is
Laplace’s equation.

In a region with no charges, the electric potential ϕ satisfies
Laplace’s equation, with ϕ = V on the boundary.
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Comments of the Laplacian

The Laplacian is a fundamental object in the studies of PDEs.

1 Heat equation ut = k∆u, wave equation utt = c∆u

2 Dirichlet energy E (u) =
∫
|∇u|2: Euler-Lagrange equation for

E (u) is ∆u = 0, energy minimised if u is harmonic.

3 The Navier-Stokes equations:{
∇ · u = 0

ρDu
Dt = ρF −∇p + µ∆u

The Laplacian term represents diffusion in momentum.
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Properties of the Laplacian and harmonic functions

Proposition 0.1

∆ is translation invariant. If u(x) = u(x1, . . . , xn) is harmonic in Ω
and we make the change of variables x′ = (x ′1, . . . , x

′
n) = x+ a,

then instead of
n∑

j=1

∂2uj
∂x2j

= 0

we have
n∑

j=1

∂2uj
∂(x ′j )

2
= 0.
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Properties of the Laplacian and harmonic functions

Theorem 2

If a function u is harmonic on Ω, then it is in C∞(Ω).

This follows from elliptic regularity: A linear differential operator

P =
∑
|α|≤m

aα(−i∂)α, aα constants, α multi-index

is elliptic if its principle symbol SP(ξ) =
∑

|α|=m aαξ
α ̸= 0 for all

|ξ| ≠ 0. Conveniently, ∆ is elliptic, as we can rewrite

∆ = −
n∑

j=1

(−i∂xj)(−i∂xj)

so that for |ξ| ≠ 0, we have

S∆(ξ) = −
n∑

j=1

ξjξj = −|ξ|2 ̸= 0.
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Properties of the Laplacian and harmonic functions

Theorem 3

Let L be an elliptic differential operator such that Lu = f for
u ∈ C 2(Ω), f ∈ C∞(Ω). Then u ∈ C∞(Ω) as well.

In the context of the Dirichlet problem, L = ∆ and f = 0 ∈ C∞,
so all harmonic functions are C∞− functions.
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The Dirichlet boundary condition

Definition 4

Let L be a differential operator and f be a function defined in Ω
such that Lu = f in Ω. This PDE has Dirichlet boundary condition
if we have

u = g on ∂Ω

where g is a function defined on ∂Ω.

In other words, a Dirichlet boundary condition specifies the
function u on the boundary of the domain Ω.
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Formal formulation of the Dirichlet problem

Problem 5

(Dirichlet.) Does there exist a solution u ∈ C 2(Ω) to Laplace’s
equation ∆u = 0 subject to the Dirichlet boundary condition
u = g on ∂Ω where g ∈ C (∂Ω)? If so, is the solution unique?

This is a non-trivial problem, as

Ω is arbitrary: No specified geometry. In particular, ∂Ω is not
specified, and can be very irregular.

g is also not specified.

Hence, we cannot see a solution u right away. However, we can
immediately say that if a solution to the Dirichlet problem exists,
then it is unique! Introduce the maximum principles for harmonic
functions.
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Maximum principles

Theorem 6

(Strong maximal principle.) Let Ω ∈ Rn be open, bounded and
connected. Then if u is harmonic on Ω and continuous on Ω, we
either have

u(x) = sup
y∈Ω

u(y) = constant or u(x) < sup
y∈Ω

u(y) ∀x ∈ Ω.

Corollary 7

(Weak maximal principle.) Under the assumption of theorem 6, we
have the estimate

min
y∈∂Ω

u(y) ≤ u(x) ≤ max
y∈∂Ω

u(y)

for all x ∈ Ω.
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Maximum principles

Using the maximum principles, we conclude that the Dirichlet
problem can have at most one solution.

Proof.

Suppose that both u1 and u2 solve the Dirichlet problem. Then
∆u1 = ∆u2 = 0 in Ω and u1 = u2 = g on ∂Ω. Thus, we obtain{

∆(u1 − u2) = 0 in Ω

u1 − u2 = 0 on ∂Ω

By the linearity of the Laplacian, u1 − u2 is harmonic on Ω. By the
weak maximum principle, u1 − u2 takes its extrema on ∂Ω. But
this implies that u1 − u2 = 0 on the whole of Ω.
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If Ω is a ball ...

Does the Dirichlet problem have a solution for regular
domains? Set Ω to be a ball B.

Theorem 8

(Weierstrass.) Let K ⊂ Rn be compact. Then the set of
polynomials is dense in C (K ).

By our premises Ω is compact. =⇒ Make sense to first consider
the case where g : Rn → R is a polynomial. We show that in this
case, the Dirichlet problem has a solution!
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If Ω is a ball ...

Proof.

∆ is translation invariant, so it is enough to prove the case
B = B(0, 1). Scale+shift to any other ball in Rn.
We find a solution explicitly:

1 Denote the space of polynomials of degree at most d by Pd ,
and consider the linear map T : Pd → Pd ,
Tp = ∆[(1− |x |2)p] for p ∈ Pd . In particular, g ∈ Pd .

2 If Tp = 0, then for v = (1− |x |2)p, ∆v = 0. Moreover, v = 0
on ∂B as |x | = 1 there. By the maximum principle, v ≡ 0 in
B and Tp = 0 =⇒ p = 0. Hence T is invertible as
kerT = {0}.

Bingheng Yang The Dirichlet problem and Perron’s solution



If Ω is a ball ...

Proof.

3 Define w := u − g . u solves the Dirichlet problem iff
∆w = −∆g in B and w = 0 on ∂B. By the invertibility of T ,
we can find q ∈ Pd such that Tq = −∆g .

4 w = (1− |x |2)q is a solution to the above pair of equations,
so u = w + g = g + (1− |x |2)T−1(−∆g) is the solution we
seek.
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What if g is not a polynomial?

In general, if g ∈ C (∂Ω), as ∂B is compact, there exists a
sequence of polynomials gn on ∂B converging uniformly to g . By
our previous results, there exists a sequence of harmonic
polynomials un in B satisfying un = gn on ∂B. Hence the functions
±(un − um) are also harmonic, and by the maximum principle
supx∈B |un − um| ≤ supx∈∂B |gn − gm| → 0. Under the supremum
norm C k(Ω) is Banach, so un → u ∈ C (B) uniformly with u = g
on ∂B.
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What if g is not a polynomial?

Theorem 9

Let fn be a uniformly bounded sequence of C 4(Ω) harmonic
functions. Then fn has a subsequence which converges to a
harmonic function f ∈ C 2(Ω) uniformly on compact subsets of Ω.

un are polynomials =⇒ uniformly bounded on Ω. un are
harmonic, so they are in C∞ =⇒ un ∈ C 4. Thus we can find a
subsequence unk converging to some harmonic limiting function.
By uniqueness of limit, this function is precisely u.
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Perron’s method

Oskar Perron’s work: Eine neue Behandlung der ersten
Randwertaufgabe für ∆u = 0, December 1923.

Figure: Oskar Perron at the Oberwolfach Research Institute for
Mathematics, 1952.

Bingheng Yang The Dirichlet problem and Perron’s solution



Perron’s method

Idea:

1 We know the existence of a solution for balls: Piece up balls
to obtain a more irregular boundary Ω.

2 First find a suitable candidate for ∆u = 0 in Ω, then
separately show that this candidate in question satisfies u = g
on ∂Ω.
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Subharmonic functions

Main characters: Subharmonic functions.

Definition 10

A function u ∈ C (Ω) is said to be subharmonic if for every ball
B ⊂ Ω and for every harmonic function h ∈ C 2(B) such that u ≤ h
on ∂B, one has u ≤ h in B.

It can be shown that if u1, . . . , un are subharmonic in Ω, then

u(x) = max
j=1,...,n

uj(x)

is also subharmonic.
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Example of subharmonic functions

Example 11

Work in R, B = (a, b). Then u(x) = |x | is subharmonic.

All harmonic functions h on R are straight lines of the form
h(x) = cx + d . h is an affine map so we have
h(ta+ (1− t)b) = th(a) + (1− t)h(b) for all t ∈ (0, 1).
If u ≤ h on ∂B = {a, b}:
Triangle inequality gives u(ta+ (1− t)b) = |ta+ (1− t)b| ≤
|ta|+ |(1− t)b| = t|a|+ (1− t)|b| = tu(a) + (1− t)(b) ≤
th(a) + (1− t)h(b) = h(ta+ (1− t)b).

Conclude by setting x = ta+ (1− t)b as we can do this for all
x ∈ (a, b).
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Harmonic lifting

Definition 12

Let u be subharmonic on Ω and let B ⊊ Ω be a ball. Let u be the
harmonic function in B such that u = u on ∂B. The harmonic
lifting of u in B is defined by

U(x) :=

{
u(x), x ∈ B
u(x), x ∈ Ω \ B

.

U is subharmonic in Ω: Given a ball B′ ⊊ Ω, B′ ⊃ B and a
harmonic function h in B′ satisfying h ≥ U on ∂B′, since u ≤ U in
B′ we have u ≤ h in B′, so u ≤ h in B′ − B as well. By the
maximum principle, U ≤ h in B ∩ B′, so U ≤ h in B′.
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Cornerstone of Perron’s solution

Definition 13

Let Sg denote the class of subharmonic functions u on Ω satisfying
u ∈ C (Ω), u ≤ g on ∂Ω.

Sg is non-empty: The constant function m = inf∂Ω g clearly
satisfies the conditions. Moreover, for all u ∈ Sg one has
u ≤ sup∂Ω g .

Proposition 0.2

The function v(x) := supu∈Sg u(x) is harmonic.

By the above v is well-defined.
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Cornerstone of Perron’s solution

Proof.

1 Fix x ∈ Ω and fix a ball B(x , r) ⊂ Ω. Let vn(x) ∈ Sg be a
sequence that converges to v(x) such that vn ≥ inf∂Ω g for all
n.

2 For each n, let Vn be the harmonic lifting of vn on B(x , r).
Then Vn are subharmonic with
inf∂Ω g ≤ vn ≤ Vn ≤ v ≤ g ≤ sup∂Ω g on ∂Ω. Hence Vn is
uniformly bounded and by theorem 9, Vn → V ∈ C 2(B(x , r))
in compact subsets of B(x , r). Furthermore, as vn(x) → v(x),
we have Vn(x) → v(x). From here we conclude that V ≤ v in
B(x , r).
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Cornerstone of Perron’s solution

Proof.

3 We show that in fact V = v in B(x , r). Suppose not: Then
there exists y ∈ B(x , r) such that V (y) < v(y), and there
exists w ∈ Sg such that V (y) < w(y) < v(y). Define a new
sequence wn := max(w ,Vn) ∈ Sg and let Wn be the harmonic
lifting of wn with respect to B(x , r). By the definition of
harmonic lifting, we have Wn(y) ≥ wn(y) ≥ w(y) > V (y) in
Ω. On the other hand, vn ≤ Vn ≤ wn ≤ Wn ≤ v in Ω.

4 Taking the limits n → ∞ gives Wn → W ∈ C 2(B(x , r)). We
obtain V ≤ W in B(x , r) as V <Wn, and V (x) = W (x) = v .
By the strong maximal principle, V = W =⇒ contradiction.
Hence V = v : Since V is harmonic, so is v .
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Boundary conditions?

Let us give ourselves some degree of regularity on the boundary.

Definition 14

Ω satisfies the exterior sphere property if at all p ∈ ∂Ω we can find
a ball B ⊂ Ωc such that p ∈ ∂B.
(Ω has no inwards-bending corners.)

Then we have the following:

Proposition 0.3

Suppose that Ω has the exterior sphere property. Then the
function v(x) := supu∈Sg u(x) satisfies u = g on ∂Ω.

To prove this we make use of barrier functions.
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Barrier functions and regular points

Definition 15

Let w be a C (Ω)-function. It is a barrier function at y ∈ ∂Ω
relative to Ω if

1 w is subharmonic in Ω

2 w(y) = 0 and w(x) < 0 for all x ∈ ∂Ω, x ̸= y .

Example 16

Suppose that Ω has the exterior sphere property. Take y ∈ ∂Ω:
Then there exists a tangent plane such that Ω is on one side of the
tangent plane. By rigid motion, WLOG suppose that y = 0 and
tangent plane is xn = 0 with Ω contained in the lower half-plane
{xn < 0}. Now xn = 0 serves as a barrier.
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Barrier functions and regular boundary points

Definition 17

A boundary point y ∈ ∂Ω is regular if there exists a barrier
function at y . Ω is regular if all of its boundary points are regular.

In particular, if Ω has the exterior sphere property, it is regular.
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Proof of proposition 0.3

Proof.

We show that v(x) = supu∈Sg u(x) satisfies

lim
x→y ,x∈Ω

v(x) = g(y)

at every regular boundary point y ∈ ∂Ω. Fix ϵ > 0 and let w be a
barrier function at y . Both g and w are continuous on ∂Ω:
Choose δ > 0, A > 0 such that

|x − y | < δ =⇒ |g(x)− g(y)| < ϵ

|x − y | ≥ δ =⇒ Aw(x) ≤ −2maxx∈∂Ω g(x)
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Proof of proposition 0.3

Proof.

Define ṽ(x) := g(y) + Aw(x)− ϵ, x ∈ Ω.

RHS is in C (Ω), so ṽ ∈ C (Ω).

RHS is subharmonic as w(x) is subharmonic, so ṽ is also
subharmonic.
We claim that ṽ ∈ Sg : Let x ∈ ∂Ω. If |x − y | < δ, then

ṽ(x) = g(y) + Aw(x)− ϵ < g(y)− ϵ < g(x).

If |x − y | ≥ δ, then

ṽ(x) = g(y) + Aw(x)− ϵ ≤ − max
x∈∂Ω

g(x)− ϵ < g(x).
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Proof of proposition 0.3

Proof.

Hence ṽ ∈ Sg and ṽ(x) ≤ v(x) for all x ∈ Ω. We conclude that

g(y)− ϵ = lim
x→y ,x∈Ω

ṽ(x) ≤ lim inf v(x). (1)

Now suppose that the boundary condition is u = −g and consider
ũ = supu∈S−g

u. By construction v(x) ≤ g(x) and −ũ(x) ≤ −g(x)
for x ∈ ∂Ω. The strong maximum principle implies ũ ≤ −v for all
x ∈ Ω. Using (1), we deduce the following:

−g(y)− ϵ ≤ lim inf
x∈Ω,x→y

ũ(x) ≤ lim inf
x∈Ω,x→y

−u(x) = − lim sup
x∈Ω,x→y

u(x)

and thus g(y)− ϵ ≤ lim infx∈Ω,x→y u(x) ≤ lim supx∈Ω,x→y u(x) ≤
g(y) + ϵ.
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Final result

We arrive at ...

Theorem 18

(Perron, 1923.) Let Ω be open, bounded, and connected. Suppose
that Ω satisfies the exterior sphere property. Then given
g ∈ C (∂Ω), the Dirichlet problem{

∆u = 0 in Ω

u = g on ∂Ω

has a unique solution u ∈ C 2(Ω) satisfying u ∈ C (Ω).
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Inviscid incompressible flow past an obstacle

The governing equation for the velocity u of an inviscid
incompressible flow is Laplace’s equation ∆u = 0.

A solid obstacle occupies a closed region V ∈ R3. The flow
occurs in Ω := V c .

A suitable boundary condition for this problem is the
no-normal velocity condition

∂u

∂n
= 0 on ∂Ω.

But the no-slip condition

u = 0 on ∂Ω

is not applicable.
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Inviscid flow past an obstacle

Indeed, we obtain the system{
∆u = 0 in Ω

u = 0 on ∂Ω

By Perron’s solution, there is exactly one solution to this problem.
By the maximal principle, u takes its maximum and minimum
values on ∂Ω. We hence conclude that u must be identically zero.
=⇒ the model is ill-formulated.
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