The Dirichlet problem and Perron's solution

Bingheng Yang

University college London

Undergraduate mathematics colloquium, 22/23

Bingheng Yang The Dirichlet problem and Perron's solution

- $\Omega \subset \mathbb{R}^n$ is an open, bounded, *connected* subset. Ω has boundary $\partial \Omega$ and its closure is denoted by $\overline{\Omega}$.
- Δ = Laplacian. More generally, $L = \sum_{|\alpha| \le n} a_{\alpha}(x) \partial^{\alpha}$ is a differential operator. Here $\alpha = (\alpha_1, \dots, \alpha_n)$ is some multi-index.
- The space of *n*-times continuously differentiable functions in Ω is denoted by Cⁿ(Ω). The space of *n*-times uniformly continuously differentiable functions in Ω is denoted by Cⁿ(Ω). All derivatives are in the classical sense.

Definition 1

A function $u \in C^2(\Omega)$ is harmonic if $\Delta u = 0$ in Ω .

Some examples:

- Let f(z) = f(x, y) be an entire function. Then its real part $\Re(f)$ and imaginary part $\Im(f)$ are both harmonic on \mathbb{R}^2 .
- For inviscid incompressible planar flow, the governing equation for the streamfunction ψ and the velocity potential ϕ is Laplace's equation.
- In a region with no charges, the electric potential ϕ satisfies Laplace's equation, with $\phi = V$ on the boundary.

The Laplacian is a fundamental object in the studies of PDEs.

- **1** Heat equation $u_t = k\Delta u$, wave equation $u_{tt} = c\Delta u$
- Oirichlet energy E(u) = ∫ |∇u|²: Euler-Lagrange equation for E(u) is Δu = 0, energy minimised if u is harmonic.
- Interview Stokes equations:

$$\begin{cases} \nabla \cdot u = 0\\ \rho \frac{Du}{Dt} = \rho F - \nabla p + \mu \Delta u \end{cases}$$

The Laplacian term represents diffusion in momentum.

Proposition 0.1

 Δ is translation invariant. If $u(\mathbf{x}) = u(x_1, \dots, x_n)$ is harmonic in Ω and we make the change of variables $\mathbf{x}' = (x'_1, \dots, x'_n) = \mathbf{x} + \mathbf{a}$, then instead of

$$\sum_{j=1}^{n} \frac{\partial^2 u_j}{\partial x_j^2} = 0$$

we have

$$\sum_{j=1}^n \frac{\partial^2 u_j}{\partial (x'_j)^2} = 0.$$

Properties of the Laplacian and harmonic functions

Theorem 2

If a function u is harmonic on Ω , then it is in $C^{\infty}(\Omega)$.

This follows from elliptic regularity: A linear differential operator

$${\sf P}=\sum_{|lpha|\leq m}{\sf a}_lpha(-i\partial)^lpha,\;{\sf a}_lpha$$
 constants, $lpha$ multi-index

is elliptic if its principle symbol $\mathfrak{S}_P(\xi) = \sum_{|\alpha|=m} a_{\alpha} \xi^{\alpha} \neq 0$ for all $|\xi| \neq 0$. Conveniently, Δ is elliptic, as we can rewrite

$$\Delta = -\sum_{j=1}^{n} (-i\partial x_j)(-i\partial x_j)$$

so that for $|\xi| \neq 0$, we have

$$\mathfrak{S}_{\Delta}(\xi) = -\sum_{j=1}^n \xi_j \xi_j = -|\xi|^2 \neq 0.$$

Theorem 3

Let L be an elliptic differential operator such that Lu = f for $u \in C^2(\Omega)$, $f \in C^{\infty}(\Omega)$. Then $u \in C^{\infty}(\Omega)$ as well.

In the context of the Dirichlet problem, $L = \Delta$ and $f = 0 \in C^{\infty}$, so all harmonic functions are C^{∞} - functions.

Definition 4

Let *L* be a differential operator and *f* be a function defined in Ω such that Lu = f in Ω . This PDE has Dirichlet boundary condition if we have

 $u = g \text{ on } \partial \Omega$

where g is a function defined on $\partial \Omega$.

In other words, a Dirichlet boundary condition specifies the function u on the boundary of the domain Ω .

Problem 5

(Dirichlet.) Does there exist a solution $u \in C^2(\Omega)$ to Laplace's equation $\Delta u = 0$ subject to the Dirichlet boundary condition u = g on $\partial \Omega$ where $g \in C(\partial \Omega)$? If so, is the solution unique?

This is a non-trivial problem, as

- Ω is arbitrary: No specified geometry. In particular, $\partial \Omega$ is not specified, and can be very irregular.
- g is also not specified.

Hence, we cannot see a solution u right away. However, we can immediately say that if a solution to the Dirichlet problem exists, then it is unique! Introduce the maximum principles for harmonic functions.

Theorem 6

(Strong maximal principle.) Let $\Omega \in \mathbb{R}^n$ be open, bounded and connected. Then if u is harmonic on Ω and continuous on $\overline{\Omega}$, we either have

$$u(x) = \sup_{y \in \Omega} u(y) = constant \text{ or } u(x) < \sup_{y \in \Omega} u(y) \ \forall x \in \Omega.$$

Corollary 7

(Weak maximal principle.) Under the assumption of theorem 6, we have the estimate

$$\min_{y \in \partial \Omega} u(y) \le u(x) \le \max_{y \in \partial \Omega} u(y)$$

for all $x \in \overline{\Omega}$.

Using the maximum principles, we conclude that the Dirichlet problem can have at most one solution.

Proof.

Suppose that both u_1 and u_2 solve the Dirichlet problem. Then $\Delta u_1 = \Delta u_2 = 0$ in Ω and $u_1 = u_2 = g$ on $\partial \Omega$. Thus, we obtain

$$egin{cases} \Delta(u_1-u_2)=0 ext{ in } \Omega\ u_1-u_2=0 ext{ on } \partial\Omega \end{cases}$$

By the linearity of the Laplacian, $u_1 - u_2$ is harmonic on Ω . By the weak maximum principle, $u_1 - u_2$ takes its extrema on $\partial \Omega$. But this implies that $u_1 - u_2 = 0$ on the whole of $\overline{\Omega}$.

• Does the Dirichlet problem have a solution for regular domains? Set Ω to be a ball \mathcal{B} .

Theorem 8

(Weierstrass.) Let $K \subset \mathbb{R}^n$ be compact. Then the set of polynomials is dense in C(K).

By our premises $\overline{\Omega}$ is compact. \implies Make sense to first consider the case where $g : \mathbb{R}^n \to \mathbb{R}$ is a polynomial. We show that in this case, the Dirichlet problem has a solution!

Proof.

 Δ is translation invariant, so it is enough to prove the case $\mathcal{B} = \mathcal{B}(0, 1)$. Scale+shift to any other ball in \mathbb{R}^n .

We find a solution explicitly:

- Denote the space of polynomials of degree at most d by P_d, and consider the linear map T : P_d → P_d, Tp = Δ[(1 − |x|²)p] for p ∈ P_d. In particular, g ∈ P_d.
- **2** If Tp = 0, then for $v = (1 |x|^2)p$, $\Delta v = 0$. Moreover, v = 0 on $\partial \mathcal{B}$ as |x| = 1 there. By the maximum principle, $v \equiv 0$ in \mathcal{B} and $Tp = 0 \implies p = 0$. Hence T is invertible as ker $T = \{0\}$.

Proof.

- Define w := u g. u solves the Dirichlet problem iff $\Delta w = -\Delta g$ in \mathcal{B} and w = 0 on $\partial \mathcal{B}$. By the invertibility of T, we can find $q \in P_d$ such that $Tq = -\Delta g$.
- $w = (1 |x|^2)q$ is a solution to the above pair of equations, so $u = w + g = g + (1 - |x|^2)T^{-1}(-\Delta g)$ is the solution we seek.

In general, if $g \in C(\partial\Omega)$, as $\partial\mathcal{B}$ is compact, there exists a sequence of polynomials g_n on $\partial\mathcal{B}$ converging uniformly to g. By our previous results, there exists a sequence of harmonic polynomials u_n in \mathcal{B} satisfying $u_n = g_n$ on $\partial\mathcal{B}$. Hence the functions $\pm(u_n - u_m)$ are also harmonic, and by the maximum principle $\sup_{x\in\mathcal{B}}|u_n - u_m| \leq \sup_{x\in\partial\mathcal{B}}|g_n - g_m| \to 0$. Under the supremum norm $C^k(\overline{\Omega})$ is Banach, so $u_n \to u \in C(\mathcal{B})$ uniformly with u = g on $\partial\mathcal{B}$.

Theorem 9

Let f_n be a uniformly bounded sequence of $C^4(\Omega)$ harmonic functions. Then f_n has a subsequence which converges to a harmonic function $f \in C^2(\Omega)$ uniformly on compact subsets of Ω .

 u_n are polynomials \implies uniformly bounded on Ω . u_n are harmonic, so they are in $C^{\infty} \implies u_n \in C^4$. Thus we can find a subsequence u_{n_k} converging to some harmonic limiting function. By uniqueness of limit, this function is precisely u.

Perron's method

Oskar Perron's work: Eine neue Behandlung der ersten Randwertaufgabe für $\Delta u = 0$, December 1923.

Figure: Oskar Perron at the Oberwolfach Research Institute for Mathematics, 1952.

Idea:

- We know the existence of a solution for balls: Piece up balls to obtain a more irregular boundary Ω.
- First find a suitable candidate for Δu = 0 in Ω, then separately show that this candidate in question satisfies u = g on ∂Ω.

Main characters: Subharmonic functions.

Definition 10

A function $u \in C(\Omega)$ is said to be *subharmonic* if for every ball $\mathcal{B} \subset \Omega$ and for every harmonic function $h \in C^2(\mathcal{B})$ such that $u \leq h$ on $\partial \mathcal{B}$, one has $u \leq h$ in \mathcal{B} .

It can be shown that if u_1, \ldots, u_n are subharmonic in Ω , then

$$u(x) = \max_{j=1,\dots,n} u_j(x)$$

is also subharmonic.

Example 11

Work in \mathbb{R} , $\mathcal{B} = (a, b)$. Then u(x) = |x| is subharmonic.

- All harmonic functions h on \mathbb{R} are straight lines of the form h(x) = cx + d. h is an affine map so we have h(ta + (1 t)b) = th(a) + (1 t)h(b) for all $t \in (0, 1)$. If $u \le h$ on $\partial \mathcal{B} = \{a, b\}$:
- Triangle inequality gives $u(ta + (1 t)b) = |ta + (1 t)b| \le |ta| + |(1 t)b| = t|a| + (1 t)|b| = tu(a) + (1 t)(b) \le th(a) + (1 t)h(b) = h(ta + (1 t)b).$
- Conclude by setting x = ta + (1 − t)b as we can do this for all x ∈ (a, b).

Definition 12

Let u be subharmonic on Ω and let $\mathcal{B} \subsetneq \Omega$ be a ball. Let \overline{u} be the harmonic function in \mathcal{B} such that $u = \overline{u}$ on $\partial \mathcal{B}$. The harmonic lifting of u in \mathcal{B} is defined by

$$\mathfrak{U}(x):=egin{cases}\overline{u}(x), x\in\mathcal{B}\ u(x), x\in\Omega\setminus\mathcal{B}\end{cases}$$

 \mathfrak{U} is subharmonic in Ω : Given a ball $\mathcal{B}' \subsetneq \Omega$, $\mathcal{B}' \supset \mathcal{B}$ and a harmonic function h in \mathcal{B}' satisfying $h \ge \mathfrak{U}$ on $\partial \mathcal{B}'$, since $u \le \mathfrak{U}$ in \mathcal{B}' we have $u \le h$ in \mathcal{B}' , so $u \le h$ in $\mathcal{B}' - \mathcal{B}$ as well. By the maximum principle, $\mathfrak{U} \le h$ in $\mathcal{B} \cap \mathcal{B}'$, so $\mathfrak{U} \le h$ in \mathcal{B}' .

.

Definition 13

Let S_g denote the class of subharmonic functions u on Ω satisfying $u \in C(\overline{\Omega})$, $u \leq g$ on $\partial \Omega$.

 S_g is non-empty: The constant function $m = \inf_{\partial\Omega} g$ clearly satisfies the conditions. Moreover, for all $u \in S_g$ one has $u \leq \sup_{\partial\Omega} g$.

Proposition 0.2

The function $v(x) := \sup_{u \in S_g} u(x)$ is harmonic.

By the above v is well-defined.

Proof.

- Fix x ∈ Ω and fix a ball B(x, r) ⊂ Ω. Let v_n(x) ∈ S_g be a sequence that converges to v(x) such that v_n ≥ inf_{∂Ω} g for all n.
- ② For each *n*, let V_n be the harmonic lifting of v_n on $\mathcal{B}(x, r)$. Then V_n are subharmonic with $\inf_{\partial\Omega} g \leq v_n \leq V_n \leq v \leq g \leq \sup_{\partial\Omega} g$ on $\partial\Omega$. Hence V_n is uniformly bounded and by theorem 9, $V_n \rightarrow V \in C^2(\mathcal{B}(x, r))$ in compact subsets of $\mathcal{B}(x, r)$. Furthermore, as $v_n(x) \rightarrow v(x)$, we have $V_n(x) \rightarrow v(x)$. From here we conclude that $V \leq v$ in $\mathcal{B}(x, r)$.

Cornerstone of Perron's solution

Proof.

- We show that in fact V = v in B(x, r). Suppose not: Then there exists y ∈ B(x, r) such that V(y) < v(y), and there exists w ∈ S_g such that V(y) < w(y) < v(y). Define a new sequence w_n := max(w, V_n) ∈ S_g and let W_n be the harmonic lifting of w_n with respect to B(x, r). By the definition of harmonic lifting, we have W_n(y) ≥ w_n(y) ≥ w(y) > V(y) in Ω. On the other hand, v_n ≤ V_n ≤ w_n ≤ W_n ≤ v in Ω.
- Taking the limits n→∞ gives W_n → W ∈ C²(B(x, r)). We obtain V ≤ W in B(x, r) as V < W_n, and V(x) = W(x) = v. By the strong maximal principle, V = W ⇒ contradiction. Hence V = v: Since V is harmonic, so is v.

Let us give ourselves some degree of regularity on the boundary.

Definition 14

 Ω satisfies the exterior sphere property if at all $p \in \partial \Omega$ we can find a ball $\mathcal{B} \subset \Omega^c$ such that $p \in \partial \mathcal{B}$. (Ω has no inwards-bending corners.)

Then we have the following:

Proposition 0.3

Suppose that Ω has the exterior sphere property. Then the function $v(x) := \sup_{u \in S_g} u(x)$ satisfies u = g on $\partial \Omega$.

To prove this we make use of barrier functions.

Definition 15

Let w be a $C(\overline{\Omega})$ -function. It is a barrier function at $y \in \partial \Omega$ relative to Ω if

- **(**) *w* is subharmonic in Ω
- $w(y) = 0 \text{ and } w(x) < 0 \text{ for all } x \in \partial\Omega, x \neq y.$

Example 16

Suppose that Ω has the exterior sphere property. Take $y \in \partial \Omega$: Then there exists a tangent plane such that Ω is on one side of the tangent plane. By rigid motion, WLOG suppose that y = 0 and tangent plane is $x_n = 0$ with Ω contained in the lower half-plane $\{x_n < 0\}$. Now $x_n = 0$ serves as a barrier.

Definition 17

A boundary point $y \in \partial \Omega$ is regular if there exists a barrier function at y. Ω is regular if all of its boundary points are regular.

In particular, if Ω has the exterior sphere property, it is regular.

Proof.

We show that $v(x) = \sup_{u \in S_{e}} u(x)$ satisfies

$$\lim_{x\to y,x\in\Omega}v(x)=g(y)$$

at every regular boundary point $y \in \partial \Omega$. Fix $\epsilon > 0$ and let w be a barrier function at y. Both g and w are continuous on $\partial \Omega$: Choose $\delta > 0$, A > 0 such that

•
$$|x - y| < \delta \implies |g(x) - g(y)| < \epsilon$$

• $|x - y| \ge \delta \implies Aw(x) \le -2 \max_{x \in \partial \Omega} g(x)$

Proof of proposition 0.3

Proof.

Define $\tilde{v}(x) := g(y) + Aw(x) - \epsilon$, $x \in \overline{\Omega}$.

- RHS is in $C(\overline{\Omega})$, so $\tilde{v} \in C(\overline{\Omega})$.
- RHS is subharmonic as w(x) is subharmonic, so ν̃ is also subharmonic.

We claim that $\tilde{v} \in S_g$: Let $x \in \partial \Omega$. If $|x - y| < \delta$, then

$$\widetilde{v}(x) = g(y) + Aw(x) - \epsilon < g(y) - \epsilon < g(x).$$

If $|x - y| \ge \delta$, then

$$\widetilde{v}(x) = g(y) + Aw(x) - \epsilon \leq -\max_{x \in \partial \Omega} g(x) - \epsilon < g(x).$$

Proof.

Hence $\tilde{v} \in S_g$ and $\tilde{v}(x) \leq v(x)$ for all $x \in \Omega$. We conclude that

$$g(y) - \epsilon = \lim_{x \to y, x \in \Omega} \tilde{v}(x) \le \liminf v(x).$$
 (1)

Now suppose that the boundary condition is u = -g and consider $\tilde{u} = \sup_{u \in S_{-g}} u$. By construction $v(x) \leq g(x)$ and $-\tilde{u}(x) \leq -g(x)$ for $x \in \partial \Omega$. The strong maximum principle implies $\tilde{u} \leq -v$ for all $x \in \overline{\Omega}$. Using (1), we deduce the following:

$$-g(y) - \epsilon \leq \liminf_{x \in \Omega, x \to y} \tilde{u}(x) \leq \liminf_{x \in \Omega, x \to y} -u(x) = -\limsup_{x \in \Omega, x \to y} u(x)$$

and thus $g(y) - \epsilon \leq \liminf_{x \in \Omega, x \to y} u(x) \leq \limsup_{x \in \Omega, x \to y} u(x) \leq \sup_{x \in \Omega, x \to y} u(x) \leq u(x)$

We arrive at ...

Theorem 18

(Perron, 1923.) Let Ω be open, bounded, and connected. Suppose that Ω satisfies the exterior sphere property. Then given $g \in C(\partial \Omega)$, the Dirichlet problem

$$\begin{cases} \Delta u = 0 \text{ in } \Omega \\ u = g \text{ on } \partial \Omega \end{cases}$$

has a unique solution $u \in C^2(\Omega)$ satisfying $u \in C(\overline{\Omega})$.

Inviscid incompressible flow past an obstacle

- The governing equation for the velocity u of an inviscid incompressible flow is Laplace's equation Δu = 0.
- A solid obstacle occupies a closed region V ∈ ℝ³. The flow occurs in Ω := V^c.
- A suitable boundary condition for this problem is the no-normal velocity condition

$$\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega.$$

But the no-slip condition

$$u = 0$$
 on $\partial \Omega$

is not applicable.

Indeed, we obtain the system

$$\begin{cases} \Delta u = 0 \text{ in } \Omega \\ u = 0 \text{ on } \partial \Omega \end{cases}$$

By Perron's solution, there is exactly one solution to this problem. By the maximal principle, u takes its maximum and minimum values on $\partial \Omega$. We hence conclude that u must be identically zero. \implies the model is ill-formulated.

- Gilbarg, Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition. Springer Berlin, Heidelberg.
- MA40203 notes by Miles Wheeler
- Gantumur, Perron's method for the Dirichlet problem https://www.math.mcgill.ca/gantumur/math580f14/ perron.pdf
- Menon, Lecure notes on partial differential equations https://www.dam.brown.edu/people/menon/ publications/notes/pde.pdf