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Preliminary remarks

e Q2 C R"is an open, bounded, connected suEset. Q has
boundary 02 and its closure is denoted by £2.

® A = Laplacian. More generally, L=73",, -, aa(x)0" is a
differential operator. Here v = (g, ..., ) is some
multi-index.

@ The space of n—times continuously differentiable functions in
Q is denoted by C"(2). The space of n—times uniformly
continuously differentiable functions in Q is denoted by C"(Q).
All derivatives are in the classical sense.
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Comments on harmonic functions

Definition 1

A function u € C?(Q) is harmonic if Au=0in Q.

Some examples:

e Let f(z) = f(x,y) be an entire function. Then its real part
R(f) and imaginary part 3(f) are both harmonic on R.

@ For inviscid incompressible planar flow, the governing equation
for the streamfunction v and the velocity potential ¢ is
Laplace’s equation.

@ In a region with no charges, the electric potential ¢ satisfies
Laplace's equation, with ¢ = V on the boundary.
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Comments of the Laplacian

The Laplacian is a fundamental object in the studies of PDEs.
© Heat equation u; = kAu, wave equation uy = cAu

@ Dirichlet energy E(u) = [ |Vu|?: Euler-Lagrange equation for
E(u) is Au =0, energy minimised if u is harmonic.

© The Navier-Stokes equations:

V-u=0
p%:pF—Vp—i—,uAu

The Laplacian term represents diffusion in momentum.
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Properties of the Laplacian and harmonic functions

Proposition 0.1

A is translation invariant. If u(x) = u(xa,...,xp) is harmonic in Q
and we make the change of variables X' = (x1,...,x}) =x+a,
then instead of ,

0°u; 0

— =

j=1 0x;
we have
> e =
< O(x; )?
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Properties of the Laplacian and harmonic functions

If a function u is harmonic on 2, then it is in C*°(Q).

This follows from elliptic regularity: A linear differential operator
P = Z an(—i0)*, a, constants, o multi-index
lo]<m

is elliptic if its principle symbol Gp(§) = Z|a|:m a,&® # 0 for all
|€] # 0. Conveniently, A is elliptic, as we can rewrite

n

A== (—idx)(—idx)

Jj=1

so that for |£] # 0, we have
Ga€) =D &g =—IP#0.
j=1
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Properties of the Laplacian and harmonic functions

Let L be an elliptic differential operator such that Lu = f for
uc C?(Q), fe C®(Q). Then uc C®(Q) as well.

In the context of the Dirichlet problem, L = A and f =0 € C*,
so all harmonic functions are C°°— functions.
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The Dirichlet boundary condition

Definition 4
Let L be a differential operator and f be a function defined in €
such that Lu = f in Q. This PDE has Dirichlet boundary condition

if we have
u=g on 0

where g is a function defined on 0f2.

In other words, a Dirichlet boundary condition specifies the
function v on the boundary of the domain .
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Formal formulation of the Dirichlet problem

Problem 5

(Dirichlet.) Does there exist a solution u € C?() to Laplace’s
equation Au = 0 subject to the Dirichlet boundary condition
u= g on I where g € C(0Q)? If so, is the solution unique?

This is a non-trivial problem, as

@ (2 is arbitrary: No specified geometry. In particular, 992 is not
specified, and can be very irregular.
@ g is also not specified.
Hence, we cannot see a solution u right away. However, we can
immediately say that if a solution to the Dirichlet problem exists,
then it is unique! Introduce the maximum principles for harmonic
functions.
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Maximum principles

(Strong maximal principle.) Let Q € R" be open, bounded and
connected. Then if u is harmonic on ) and continuous on Q, we
either have

u(x) = sup u(y) = constant or u(x) < sup u(y) Vx € Q.
y€eQ yeQ

(Weak maximal principle.) Under the assumption of theorem 6, we
have the estimate

i < <
i u(y) < u(x) < I u(y)

for all x € Q.
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Maximum principles

Using the maximum principles, we conclude that the Dirichlet
problem can have at most one solution.

Suppose that both u; and uy solve the Dirichlet problem. Then
Au; = Aup =0in Q and u; = up = g on 9. Thus, we obtain

A(ul—uz):0inQ
up — up =0 on 00

By the linearity of the Laplacian, u; — up is harmonic on 2. By the
weak maximum principle, u; — up takes its extrema on 01). But
this implies that u; — up = 0 on the whole of Q. ]
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If Qis a ball ...

@ Does the Dirichlet problem have a solution for regular
domains? Set Q2 to be a ball B.

Theorem 8

(Weierstrass.) Let K C R" be compact. Then the set of
polynomials is dense in C(K).

By our premises § is compact. => Make sense to first consider
the case where g : R” — R is a polynomial. We show that in this
case, the Dirichlet problem has a solution!
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If Qis a ball ...

A is translation invariant, so it is enough to prove the case
B = B(0,1). Scale+shift to any other ball in R".
We find a solution explicitly:

© Denote the space of polynomials of degree at most d by Py,
and consider the linear map T : Py — Py,

Tp = A[(1 — |x|?)p] for p € Py. In particular, g € Py.

Q If Tp =0, then for v = (1 — |x|?)p, Av = 0. Moreover, v =0
on OB as |x| = 1 there. By the maximum principle, v =0 in
Band Tp=0 = p=0. Hence T is invertible as
ker T = {0}.
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If Qis a ball ...

© Define w := u— g. u solves the Dirichlet problem iff
Aw = —Ag in B and w = 0 on 0B. By the invertibility of T,
we can find g € P4 such that Tq = —Ag.

@ w = (1—|x|?)q is a solution to the above pair of equations,
sou=w+g=g+(1—|x[2)T (—Ag) is the solution we
seek.

O

v
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What if g is not a polynomial?

In general, if g € C(0R), as OB is compact, there exists a
sequence of polynomials g, on B converging uniformly to g. By
our previous results, there exists a sequence of harmonic
polynomials u, in B satisfying u, = g, on 3. Hence the functions
+(up — um) are also harmonic, and by the maximum principle
SUPxep |Un — Um| < Ssup,con |€n — gm| — 0. Under the supremum
norm CK(Q) is Banach, so u, — u € C(B) uniformly with u = g
on 0B.
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What if g is not a polynomial?

Theorem 9

Let f, be a uniformly bounded sequence of C*(Q) harmonic
functions. Then f, has a subsequence which converges to a
harmonic function f € C?(S) uniformly on compact subsets of €.

u, are polynomials = uniformly bounded on Q. u, are
harmonic, so they are in C* — u, € C*. Thus we can find a
subsequence up,, converging to some harmonic limiting function.
By uniqueness of limit, this function is precisely u.
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Perron's method

Oskar Perron's work: Eine neue Behandlung der ersten
Randwertaufgabe fiir Au = 0, December 1923.

Figure: Oskar Perron at the Oberwolfach Research Institute for
Mathematics, 1952.
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Perron's method

Idea:

@ We know the existence of a solution for balls: Piece up balls
to obtain a more irregular boundary 2.
@ First find a suitable candidate for Au = 0 in €, then

separately show that this candidate in question satisfies u = g
on 0R2.
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Subharmonic functions

Main characters: Subharmonic functions.

Definition 10

A function u € C(Q) is said to be subharmonic if for every ball
B C Q and for every harmonic function h € C?(B) such that u < h
on OB, one has u < hin B.

It can be shown that if uq,..., u, are subharmonic in €, then

u(x) = max uj(x)
j=1,...,n

is also subharmonic.
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Example of subharmonic functions

Work in R, B = (a, b). Then u(x) = |x| is subharmonic.

@ All harmonic functions h on R are straight lines of the form
h(x) = cx + d. h'is an affine map so we have
h(ta+ (1 — t)b) = th(a) + (1 — t)h(b) for all t € (0,1).

If u<honoB={a,b}:

e Triangle inequality gives u(ta+ (1 — t)b) = [ta+ (1 — t)b| <
[tal + (1 — t)b| = tfa] + (1 - t)|b] = tu(a) + (1 — t)(b) <
th(a) + (1 — t)h(b) = h(ta+ (1 — t)b).

e Conclude by setting x = ta+ (1 — t)b as we can do this for all
x € (a, b).

v
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Harmonic lifting

Definition 12

Let u be subharmonic on € and let B C 2 be a ball. Let ¥ be the
harmonic function in B such that v =4 on 0B. The harmonic
lifting of v in B is defined by

U(x) = {u(x),x eB
u(x),x e Q\ B

$l is subharmonic in Q: Given a ball B C Q, B’ D B and a
harmonic function h in B’ satisfying h > 4 on 9B, since u < 4l in
B’ we have u < hin B/, so u < hin B — B as well. By the
maximum principle, { < hin BNB', sod < hin B.
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Cornerstone of Perron’s solution

Definition 13

Let Sg denote the class of subharmonic functions u on 2 satisfying

ue C(Q), u<gondf.

Sg is non-empty: The constant function m = infgq g clearly
satisfies the conditions. Moreover, for all u € Sz one has

U < supyq 8-

Proposition 0.2

The function v(x) := sup,es, u(x) is harmonic.

By the above v is well-defined.
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Cornerstone of Perron’s solution

@ Fix x € Q and fix a ball B(x,r) C Q. Let v,(x) € S5 be a
sequence that converges to v(x) such that v, > infyq g for all
n.

@ For each n, let V,, be the harmonic lifting of v, on B(x, r).
Then V, are subharmonic with
infan g < v, <V, < v < g <supygqg on Q. Hence V, is
uniformly bounded and by theorem 9, V,, — V € C?(B(x, r))
in compact subsets of B(x, r). Furthermore, as v,(x) — v(x),
we have Vj,(x) — v(x). From here we conclude that V < v in

B(x,r).
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Cornerstone of Perron’s solution

© We show that in fact V = v in B(x, r). Suppose not: Then
there exists y € B(x, r) such that V(y) < v(y), and there
exists w € Sg such that V(y) < w(y) < v(y). Define a new
sequence w, := max(w, V,,) € S5 and let W, be the harmonic
lifting of w, with respect to B(x, r). By the definition of
harmonic lifting, we have W,(y) > wy(y) > w(y) > V(y) in
Q. On the other hand, v, <V, <w, < W, <vin Q.

@ Taking the limits n — oo gives W, — W € C?(B(x,r)). We
obtain V < Win B(x,r) as V < W, and V(x) = W(x) = v.
By the strong maximal principle, V = W — contradiction.
Hence V = v: Since V is harmonic, so is v.

Ol
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Boundary conditions?

Let us give ourselves some degree of regularity on the boundary.

Definition 14

Q) satisfies the exterior sphere property if at all p € 9Q we can find
a ball B C Q¢ such that p € 9B.
(2 has no inwards-bending corners.)

Then we have the following:

Proposition 0.3

Suppose that €0 has the exterior sphere property. Then the
function v(x) := sup,cs, u(x) satisfies u = g on 0S2.

To prove this we make use of barrier functions.
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Barrier functions and regular points

Definition 15

Let w be a C(€2)-function. It is a barrier function at y € 092
relative to Q if

@ w is subharmonic in
Q@ w(y)=0and w(x) <0 forall x € 0Q,x # y.

Example 16

Suppose that Q2 has the exterior sphere property. Take y € 99:
Then there exists a tangent plane such that Q is on one side of the
tangent plane. By rigid motion, WLOG suppose that y = 0 and
tangent plane is x, = 0 with £ contained in the lower half-plane
{xn < 0}. Now x, = 0 serves as a barrier.

Bingheng Yang



Barrier functions and regular boundary points

Definition 17
A boundary point y € 0f2 is regular if there exists a barrier
function at y. Q is regular if all of its boundary points are regular.

In particular, if  has the exterior sphere property, it is regular.
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Proof of proposition

We show that v(x) = sup,cs, u(x) satisfies

lim _v(x)=g(y)
x—y,x€Q

at every regular boundary point y € 0. Fix ¢ > 0 and let w be a
barrier function at y. Both g and w are continuous on 0€2:
Choose § > 0, A > 0 such that

° [x—y| < = lg(x) —gly)l <e

o [x—y|>d = Aw(x) < —2maxxecoq g(x)
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Proof of proposition

Define ¥(x) := g(y) + Aw(x) — ¢, x € Q.
e RHS is in C(Q), so 7 € C(Q).
@ RHS is subharmonic as w(x) is subharmonic, so v is also
subharmonic.

We claim that ¥ € S, Let x € 0Q. If [x — y| <, then
V(x) = g(y) + Aw(x) —e < g(y) — ¢ < g(x)-
If [x —y| > 6, then

V(x) = g(y) + Aw(x) — € < — max g(x) — e < g(x).
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Proof of proposition

Hence V € S, and V(x) < v(x) for all x € Q2. We conclude that

gly)—e= lim ¥(x) <liminf v(x). (1)
X—y,x€EQ
Now suppose that the boundary condition is u = —g and consider

i = sup,es_, u. By construction v(x) < g(x) and —ii(x) < —g(x)
for x € 9€Q2. The strong maximum principle implies i < —v for all
x € €. Using (1), we deduce the following:

—g(y) — e < liminf d(x) < liminf —u(x) = — limsup u(x)
XEQ,x—y x€EQ x—y XEQ x—y
and thus g(y) — € < liminfyeq x sy u(x) < limsup,ecq sy, U(x) <
gly) +e O

v
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Final result

We arrive at ...
Theorem 18

(Perron, 1923.) Let Q be open, bounded, and connected. Suppose
that ) satisfies the exterior sphere property. Then given
g € C(092), the Dirichlet problem

Au=0inQ
u=g on 0

has a unique solution u € C?(Q) satisfying u € C(Q).
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Inviscid incompressible flow past an obstacle

@ The governing equation for the velocity u of an inviscid
incompressible flow is Laplace’s equation Au = 0.

@ A solid obstacle occupies a closed region V € R3. The flow
occurs in Q := V€.

@ A suitable boundary condition for this problem is the
no-normal velocity condition

0
a—: =0 on 09.
But the no-slip condition
u=20on 02

is not applicable.
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Inviscid flow past an obstacle

Indeed, we obtain the system

Au=0inQ

u =0 on 90
By Perron’s solution, there is exactly one solution to this problem.
By the maximal principle, u takes its maximum and minimum

values on 9€2. We hence conclude that u must be identically zero.
= the model is ill-formulated.
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