Time decay of the solutions to the wave equation

Bingheng Yang

University College London, Department of Mathematics

UCL Undergraduate Mathematics Seminar, March 2024

Introduction

Problem 1

Let $W \subset \mathbb{R}^{n}$ be some 'nice' domain, and suppose that $u(t, x)$ solves $\square u=F(t, x)$ in $\mathbb{R}_{+} \times W$. In addition, suppose that the initial data $u(0, x)=\phi(x), u_{t}(0, x)=\psi(x)$ are smooth and compactly supported. What can we say about the decay of u as $t \rightarrow \infty$?

Let us consider three different cases:
(1) For $W=\mathbb{R}^{n}$ and $F \equiv 0$: Explicit formulas, obtained using spherical averages (Books of Evans, John, Strauss).
(2) For $n=3, W=\mathbb{R}^{n} \backslash \Omega, \Omega$ compact + star-shaped and $F \equiv 0$: Morawetz's works (1960s).
(3) For $W=\mathbb{R}^{n}$ and $\square u=F$ where $F=F(u, \partial u)$:

Klainerman-Sobolev inequality (1985), null condition (1986).

Explicit solutions

Let ω_{n} be the surface area of \mathbb{S}^{n}. In general, for odd n we have

$$
\begin{gathered}
u(t, x)=\frac{1}{\gamma_{n}}\left(\frac{\partial}{\partial t}\right)\left(\frac{1}{t} \frac{\partial}{\partial t}\right)^{\frac{n-3}{2}}\left(\frac{1}{\omega_{n} t} \int_{\partial \mathcal{B}(x, t)} \phi d S\right) \\
+\frac{1}{\gamma_{n}}\left(\frac{1}{t} \frac{\partial}{\partial t}\right)^{\frac{n-3}{2}}\left(\frac{1}{\omega_{n} t} \int_{\partial \mathcal{B}(x, t)} \psi d S\right), \gamma_{n}=1 \cdot 3 \cdot \ldots \cdot(n-2)
\end{gathered}
$$

and for even n we have

$$
\begin{gathered}
u(t, x)=\frac{\Gamma\left(\frac{n+2}{2}\right)}{\gamma_{n} \pi^{\frac{n}{2}}} \frac{\partial}{\partial t}\left(\frac{1}{t} \frac{\partial}{\partial t}\right)^{\frac{n-2}{2}} \int_{\mathcal{B}(x, t)} \frac{\phi(y)}{\left(t^{2}-|y-x|^{2}\right)^{\frac{1}{2}}} d y \\
+\frac{\Gamma\left(\frac{n+2}{2}\right)}{\gamma_{n} \pi^{\frac{n}{2}}}\left(\frac{1}{t} \frac{\partial}{\partial t}\right)^{\frac{n-2}{2}} \int_{\mathcal{B}(x, t)} \frac{\psi(y)}{\left(t^{2}-|y-x|^{2}\right)^{\frac{1}{2}}} d y, \gamma_{n}=2 \cdot 4 \cdot \ldots \cdot n .
\end{gathered}
$$

Explicit time decay

Theorem 2

The explicit solutions gives

$$
|u(t, \cdot)|=O\left(t^{\frac{1}{2}(n-1)}\right), t \rightarrow \infty
$$

(1) Odd n : Differentiating $\int_{\partial \mathcal{B}}$ does not produce any t.
(2) Even n : Since ϕ, ψ are compactly supported in \mathcal{B}_{R}, we have

$$
\int_{\mathcal{B}(x, t)} \frac{\phi(y)}{\left(t^{2}-|y-x|^{2}\right)^{\frac{1}{2}}} d y \leq \frac{\|\phi\|_{L \infty}}{t^{\frac{1}{2}}} \int_{0}^{R} \frac{4 \pi R^{2}}{(t-r)^{\frac{1}{2}}} d r=O\left(t^{\frac{1}{2}}\right)
$$

and again differentiating $\int_{\mathcal{B}}$ does not produce any t.

Morawetz's works

Now consider the wave equation $\square u=0$ in $\mathbb{R}_{+} \times\left(\mathbb{R}^{n} \backslash \Omega\right)$ with compactly supported smooth initial data and Robin boundary condition $\Lambda u=0$ on $\partial \Omega$.

Theorem 3

(Energy conservation.) The total energy
$E(u):=\left\|u_{t}(\cdot, x)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}+\|\nabla u(\cdot, x)\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}$ is constant in time.

Theorem 4

(Finite propagation speed.) If u solves

$$
\left\{\begin{array}{l}
\square u=0 \\
u(0, x)=\phi, u_{t}(0, x)=\psi
\end{array}\right.
$$

then $u\left(t^{\prime}, x^{\prime}\right)$ only depends on the
values of ϕ and ψ in the cone $\left\{\left|x-x^{\prime}\right| \leq t^{\prime}\right\}$. Equivalently, if
$(\phi, \psi)=(0,0)$ in $\left\{\left|x-x^{\prime}\right| \leq t^{\prime}\right\}$, then $u \equiv 0$.

Multiplier method

Let $\Lambda=$ Id. Set $\mathcal{R}^{\prime}=[0, T] \times \Omega$ be a cylinder in spacetime.
Consider

$$
\int_{\mathcal{R}^{\prime}} \square u\left(x_{j} \partial_{j} u+t u_{t}+u\right) d x d y d z d t=0
$$

and integrate by parts. Obtain terms such as

$$
\begin{gathered}
\int_{0}^{T} \int_{\partial \Omega} x_{j} \partial_{j} u \partial_{k} u n_{k} d S d t=\int_{0}^{T} \int_{\partial \Omega}\left(\partial_{n} u\right) n_{j} x_{j}\left(\partial_{n} u\right) n_{k} n_{k} d S d t \\
=\int_{0}^{T} \int_{\partial \Omega}|\nabla u|^{2} x \cdot \mathbf{n} d S d t \leq 0
\end{gathered}
$$

as Ω is star-shaped. Eventually we get the energy estimate

$$
t \int_{\mathcal{R}^{\prime}}|\nabla u|^{2}+u_{t}^{2} d x d y d z d t<K
$$

Since u_{t} also solves the initial-boundary value problem with $\Lambda=\mathrm{Id}$, we have

$$
t \int_{\mathcal{R}^{\prime}} u_{t t}^{2} d x d y d z d t<K
$$

Moreover, Morawetz proved that

$$
\left|u\left(t, x_{1}, x_{2}, x_{3}\right)\right| \leq K_{1}\left(\int_{\mathcal{R}^{\prime}} u^{2} d x d y d z\right)^{\frac{1}{2}}+K_{2}\left(\int_{\mathcal{R}^{\prime}} u_{t t}^{2} d x d y d z\right)^{\frac{1}{2}}
$$

and we can uniquely write $u=w_{t}$ where w satisfies

$$
t \int_{\mathcal{R}^{\prime}} w_{t}^{2} d x d y d z<K^{\prime}
$$

Thus $\left|u\left(t, x_{1}, x_{2}, x_{3}\right)\right|=O\left(t^{-\frac{1}{2}}\right)$.

Exponential decay

Denote $E(u, D, t)$ the energy carried by u in $D \subset \mathbb{R}^{3}$ at time t.

Theorem 5 (Morawetz, 1966)

Fix $D \subset \mathbb{R}^{3}$ and suppose that there exists $p \in C_{0}\left(\mathbb{R}^{3} \backslash \Omega\right)$ satisfying the energy inequality

$$
\begin{equation*}
E(u, D, t)<p(t) E(u, \infty, 0):=p(t) E(u) \tag{1}
\end{equation*}
$$

Then if supp $E(u, D, t) \subset \mathcal{B}_{r_{0}}$ for some $r_{0}>0$ and $E(u, D, 0) \subset \mathcal{B}_{3 \rho}$ for some $\rho>0$, we have the estimate

$$
\begin{equation*}
E(u, D, t)<\beta e^{-\alpha t} E(u) \tag{2}
\end{equation*}
$$

where $\alpha=-\frac{1}{T} \log [k p(T)]>0$ for some $T>0, k$ is a constant that depends on the shape of Ω, and $\beta=k \exp \left(\alpha\left(r_{0}+\rho+\delta T\right)\right)$ for some $\delta \in[0,1]$.

Vector field method

Definition 6

Consider the following class of vector fields:
$\Gamma \in\left\{\partial_{t}, \partial_{x}, x_{i} \partial_{j}-x_{j} \partial_{i}=: \Omega_{i j}, t \partial_{t}+x_{i} \partial_{i}=: S, t \partial_{i}+x_{i} \partial_{t}=: \Omega_{0 i}\right\}$.
Those vector fields commute with \square.
Idea: Use a weighted "Sobolev embedding" to get time decay.

Theorem 7

(Klainerman, 1985.) Let $u \in \mathcal{H}^{\left\lfloor\frac{n+2}{2}\right\rfloor}$. Then there exists $C=C(n)$ such that for

$$
\sup _{x}(1+t+r)^{\frac{n-1}{2}}(1+|t-r|)^{\frac{1}{2}}|u|(t, x) \leq C \sum_{|\alpha| \leq\left\lfloor\frac{n+2}{2}\right\rfloor}\left\|\Gamma^{\alpha} u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}(t) .
$$

Some derivatives decay faster!

Definition 8

Define the radial derivative $\partial_{v}:=\partial_{r}+\partial_{t}$ and the angular derivative

$$
|\hat{\nabla} u|^{2}:=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\frac{x_{i}}{r} \partial_{j} u-\frac{x_{j}}{r} \partial_{i} u\right)^{2} .
$$

The derivative $\bar{\partial} u$ we want to consider is given by $|\bar{\partial} u|^{2}:=\left(\partial_{v} u\right)^{2}+|\hat{\nabla} u|^{2}$.

Theorem 9

Suppose that u satisfies $\square u=0$ with initial data compactly supported in the ball \mathcal{B}_{R}. Then there exists $C=C(n, R)>0$ such that

$$
(1+t+r)^{\frac{n+1}{2}}(1+|t-r|)^{-\frac{1}{2}}|\bar{\partial} u| \leq C \sum_{|\alpha| \leq\left\lfloor\frac{n+4}{2}\right\rfloor}\left\|\partial \Gamma^{\alpha} u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}(t=0)
$$

Local-in-time existence

If $F=F(u, \partial u)$, then $\square u=F$ has a local-in-time C^{2}-solution.

Theorem 10

Consider the nonlinear wave equation

$$
\left\{\begin{array}{l}
\partial_{\alpha}\left(a^{\alpha \beta}(u) \partial_{\beta} u\right)=F(u, \partial u) \tag{3}\\
u(0, x)=\phi \in \mathcal{H}^{n+2}\left(\mathbb{R}^{n}\right), u_{t}(0, x)=\psi \in \mathcal{H}^{n+1}\left(\mathbb{R}^{n}\right)
\end{array}\right.
$$

where $a^{\alpha \beta}(u)$ are all smooth functions of u. Then there exists $T>0$ depending on $\|\phi\|_{\mathcal{H}^{n+2}\left(\mathbb{R}^{n}\right)}$ and $\|\psi\|_{\mathcal{H}^{n+1}\left(\mathbb{R}^{n}\right)}$ such that there exists a solution $u \in C^{2}\left([0, T] \times \mathbb{R}^{n}\right)$ to (3) with $u \in L^{\infty}\left([0, T] ; \mathcal{H}^{n+2}\left(\mathbb{R}^{n}\right)\right)$ and $u_{t} \in L^{\infty}\left([0, T] ; \mathcal{H}^{n+1}\left(\mathbb{R}^{n}\right)\right)$.

Theorem 11

Let $\epsilon>0$ and let $k \geq 6$. Consider the wave map equation $u: \mathbb{R}_{+} \times \mathbb{R}^{n} \rightarrow \mathbb{S}^{n}$ given by

$$
\begin{equation*}
\square u=u\left(\partial_{t} u^{T} \partial_{t} u-\partial_{j} u^{T} \partial_{j} u\right) \tag{4}
\end{equation*}
$$

If $n=4$ and we have smooth initial data $u(0, x)=\phi(x)$, $u_{t}(0, x)=\psi(x)$ that are compactly supported in \mathcal{B}_{R}. Moreover, suppose that the initial data are small in the following L^{2}-sense:

$$
\begin{equation*}
\sum_{|\alpha| \leq k}\left\|\partial \partial^{\alpha} \phi\right\|_{L^{2}\left(\mathbb{R}^{4}\right)}+\left\|\partial^{\alpha} \psi\right\|_{L^{2}\left(\mathbb{R}^{4}\right)}<\epsilon \tag{5}
\end{equation*}
$$

Then for all $R>0$, there exists $\epsilon_{0}=\epsilon_{0}(R)>0$ such that a smooth solution u is smooth for all t if $\epsilon \leq \epsilon_{0}$.

Similar results in $\mathbb{R}_{+} \times \mathbb{R}^{3}$?

The global-in-time result fails for $\mathbb{R}_{+} \times \mathbb{R}^{3}$.

Theorem 12

(John, 1981.) All non-trivial (smooth) solutions to $\square u=u_{t}^{2}$ with smooth and compactly supported initial data blow up in time.

Nonetheless:

Theorem 13

(Klainerman-Nirenberg, 1980.) Let ϕ, ψ be compactly supported. Then there exists a sufficiently small $\epsilon>0$ such that the system

$$
\left\{\begin{array}{l}
\square u=u_{t}^{2}-\sum_{j=1}^{3}\left(\partial_{j} u\right)^{2} \\
u(0, x)=\epsilon \phi(x), u_{t}(0, x)=\epsilon \psi(x)
\end{array}\right.
$$

has a smooth global-in-time solution in $\mathbb{R}_{+} \times \mathbb{R}^{3}$.

Null condition

Definition 14

Let $q^{\alpha \beta}$ be constants and let $\phi, \psi \in C^{\infty}$. The bilinear form $Q(\phi, \psi):=q^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \psi$ is a null form if for all $\xi \in \mathbb{R}^{n}$ we have

$$
\begin{equation*}
\eta^{\alpha \beta} \xi_{\alpha} \xi_{\beta}=0 \Longrightarrow q^{\alpha \beta} \xi_{\alpha} \xi_{\beta}=0 \tag{6}
\end{equation*}
$$

Example 15

$Q(u, u)=u_{t}^{2}$ is not a null form, but $Q(u, u)=u_{t}^{2}-\sum_{j=1}^{3}\left(\partial_{j}\right)^{2} u$ is.

Global existence in $\mathbb{R}_{+} \times \mathbb{R}^{3}$

For null forms we have the following estimate:

Lemma 16

There exists $C>0$ such that

$$
\begin{equation*}
|Q(\phi, \psi)| \leq C(|\partial \phi||\bar{\partial} \psi|+|\partial \psi||\bar{\partial} \phi|) \tag{7}
\end{equation*}
$$

As a result:

Theorem 17

Under the same assumptions as in Theorem 11, the wave map equations (4) still has a global-in-time smooth solution in $\mathbb{R}_{+} \times \mathbb{R}^{3}$.

References

[1] Lawrence Evans, "Partial Differential Equations". American Mathematical Society, 2010.
[2] Fritz John, "Partial Differential Equations". Springer, 1978.
[3] Walter Strauss, "Partial Differential Equations". Wiley, 1992.
[4] Cathleen Morawetz, "The Decay of Solutions of the Exterior Initial-Boundary Value Problem for the Wave Equation". Communications on Pure and Applied Mathematics, 1961.
[5] Cathleen Morawetz, "Exponential Decay of Solutions of the Wave Equation". Communications on Pure and Applied Mathematics, 1966.
[6] Sergiu Klainerman, " Uniform Decay Estimates and the Lorentz Invariance of the Classical Wave Equation". Communications on Pure and Applied Mathematics, 1985.
[7] Christopher Sogge, "Lectures on Non-Linear Wave Equations". International Press, 2008.
[8] Jonathan Luk, "Introduction to Nonlinear Wave Equations". Lecture notes, 2014.
[9] Fritz John, "Blow-Up for Quasi-Linear Wave Equations in Three Space Dimensions". Birkhäuser, 1981.
[10] Sergiu Klainerman, "Global Existence for Nonlinear Wave Equations". Communications on Pure and Applied Mathematics, 1980.

References

[11] Sergiu Klainerman, "The Null Condition and Global Existence to Nonlinear Wave Equations". Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1, 1986.
[12] Demetrios Christodolou, " Global Solutions of Nonlinear Hyperbolic Equations for Small Initial Data". Communications on Pure and Applied Mathematics, 1986.

