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Introduction

Problem 1

Let W C R" be some 'nice’ domain, and suppose that u(t, x)
solves Ou = F(t,x) in Ry x W. In addition, suppose that the
initial data u(0,x) = ¢(x), ue(0, x) = 1)(x) are smooth and
compactly supported. What can we say about the decay of u as
t—o0?

Let us consider three different cases:
@ For W =R" and F = 0: Explicit formulas, obtained using
spherical averages (Books of Evans, John, Strauss).
@ Forn=3, W =R"\ Q, Q compact + star-shaped and
F = 0: Morawetz's works (1960s).
@ For W =R" and Ou = F where F = F(u,du):
Klainerman—Sobolev inequality (1985), null condition (1986).
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Explicit solutions

Let wy, be the surface area of S”. In general, for odd n we have
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and for even n we have
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Explicit time decay

The explicit solutions gives

Ju(t, )| = O(t2¢" D), t - co.

@ Odd n: Differentiating faB does not produce any t.
@ Even n: Since ¢, 1 are compactly supported in Br, we have

/ o(y) dy < || &]] Lo /R 47 R? dr = O(t})
Beot) (22— |y —x2)2 =~ t2 Jo (t—r)z

and again differentiating fB does not produce any t.
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Morawetz's works

Now consider the wave equation Cu = 0 in Ry x (R"\ Q) with
compactly supported smooth initial data and Robin boundary
condition Au = 0 on 99.

(Energy conservation.) The total energy
E(u) := ||ut(-,x)||f2(Rn) + ||Vu(-,x)||f2(R,,) is constant in time.

V.

(Finite propagation speed.) If u solves

Ou=0

u(0,x) = ¢, ue(0,x) =1
values of ¢ and i in the cone {|x — x'| < t'}. Equivalently, if
(¢,9) = (0,0) in {|x — x'| < t'}, then u=0.

then u(t',x") only depends on the
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Multiplier method

Let A=1d. Set R = [0, T] x Q be a cylinder in spacetime.
Consider

Ou(x;0ju + tus + u)dxdydzdt = 0
R/

and integrate by parts. Obtain terms such as
T T
/ / xj0judyundSdt = / / (Onu)njx;j(Onu)ngn,dSdt
0 o2 0 o

;
:/ / |Vul’x - ndSdt <0
0 oN

as Q is star-shaped. Eventually we get the energy estimate

t/ \Vul? + u?dxdydzdt < K.
R/
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From energy decay to wave decay

Since u; also solves the initial-boundary value problem with A = Id,
we have

t / v dxdydzdt < K.

Moreover, Morawetz proved that

’

1 1
2 p
lu(t, x1, x2, x3)| < K1 (/ u2dxdydz> + Ko (/ uftdxdydz)
R/

and we can uniquely write u = w; where w satisfies

t/ w2dxdydz < K’

Thus |u(t, x1, x2,x3)| = O(t_%).
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Exponential decay

Denote E(u, D, t) the energy carried by u in D C R3 at time t.

Theorem 5 (Morawetz, 1966)

Fix D C R3 and suppose that there exists p € Co(R3\ Q)
satisfying the energy inequality

E(u,D,t) < p(t)E(u,0,0) := p(t)E(u). (1)

Then if supp E(u, D, t) C B, for some ry > 0 and
E(u,D,0) C Bz, for some p > 0, we have the estimate

E(u,D,t) < Be*"E(u) (2)

where o = — % log[kp(T)] > 0 for some T >0, k is a constant
that depends on the shape of Q, and 8 = kexp(a(ro+p+4dT))
for some § € [0, 1].
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Vector field method

Definition 6

Consider the following class of vector fields:
e {8t, Oy, X,'aj—Xja,' = Q,’j, t0; +x;0; =: S, tO;+x;0; =: Qo,’}.

Those vector fields commute with .

Idea: Use a weighted "Sobolev embedding” to get time decay.

(Klainerman, 1985.) Let u € HL"3*). Then there exists C = C(n)
such that for

sup(1+t+1)°T (L+[t—r)2ful(t.x) < € D7 1M ullizgan(t):

la <[ 52

Bingheng Yang



Some derivatives decay faster!

Define the radial derivative 0, := 0, 4+ 0; and the angular derivative

oo LR (X X \2
|Vu|® = 5 ZZ (78ju - 78,-u) .

i=1 j=1

The derivative Ou we want to consider is given by
|Ou|? := (8,u)? + [Vul2.

Suppose that u satisfies Ou = 0 with initial data compactly
supported in the ball Br. Then there exists C = C(n, R) > 0 such
that

(1+t+) (1+|t—r\) \5u|§C Z |07 ul| 2y (t = 0).

o< | 242 )

Bingheng Yang



Local-in-time existence

If F = F(u,0u), then Ou = F has a local-in-time C?-solution.

Theorem 10
Consider the nonlinear wave equation

90 (a*?(u)0gu) = F(u,du)
u(0,x) = ¢ € H'T2(R™), u:(0,x) = 1p € H'THR).

(3)

where a®®(u) are all smooth functions of u. Then there exists

T > 0 depending on ||¢||yn+2(mny and |[1)||3n+1(mny Such that there
exists a solution u € C3([0, T] x R") to (3) with

u € L®([0, T]); H"F2(R")) and uy € L%°([0, T]; HTLH(R™)).
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Global-in-time existence

Let ¢ > 0 and let k > 6. Consider the wave map equation
u:Ry xR" — S" given by

Ou = u(@tuTatu — 8juT8ju). (4)

If n =4 and we have smooth initial data u(0, x) = ¢(x),
ut(0, x) = 1(x) that are compactly supported in Bg. Moreover,
suppose that the initial data are small in the following L%>—sense:

Z [[009B||12(re) + 1|0 ]| 2may < €. (5)

o] <k

Then for all R > 0, there exists €9 = €o(R) > 0 such that a
smooth solution u is smooth for all t if € < €.
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Similar results in R, x R3?

The global-in-time result fails for Ry x R3.

(John, 1981.) All non-trivial (smooth) solutions to Ou = u? with
smooth and compactly supported initial data blow up in time.

Nonetheless:

(Klainerman—Nirenberg, 1980.) Let ¢, be compactly supported.
Then there exists a sufficiently small € > 0 such that the system

{Du = 0 = X1 (G
u(0,x) = ep(x), u(0,x) = e(x)

has a smooth global-in-time solution in Ry x R3.
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Null condition

Definition 14

Let g7 be constants and let ¢, 1) € C*. The bilinear form
Q(¢,v) == q*#0,¢dp1) is a null form if for all & € R” we have

NP6l =0 = ¢q*P¢L=0. (6)

Q(u, u) = u? is not a null form, but Q(u, u) = u? — S3_,(9;)?u is.

j=1
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Global existence in R, x RR3

For null forms we have the following estimate:

There exists C > 0 such that

1Q(6, ¥)| < C(10¢]|0Y] + |0¢][0¢]).- (7)

As a result:

Under the same assumptions as in Theorem 11, the wave map
equations (4) still has a global-in-time smooth solution in R, x R3.
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