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Introduction

Problem 1

Let W ⊂ Rn be some ’nice’ domain, and suppose that u(t, x)
solves □u = F (t, x) in R+ ×W . In addition, suppose that the
initial data u(0, x) = ϕ(x), ut(0, x) = ψ(x) are smooth and
compactly supported. What can we say about the decay of u as
t → ∞?

Let us consider three different cases:

1 For W = Rn and F ≡ 0: Explicit formulas, obtained using
spherical averages (Books of Evans, John, Strauss).

2 For n = 3, W = Rn \ Ω, Ω compact + star-shaped and
F ≡ 0: Morawetz’s works (1960s).

3 For W = Rn and □u = F where F = F (u, ∂u):
Klainerman–Sobolev inequality (1985), null condition (1986).
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Explicit solutions

Let ωn be the surface area of Sn. In general, for odd n we have
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and for even n we have
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Explicit time decay

Theorem 2

The explicit solutions gives

|u(t, ·)| = O(t
1
2
(n−1)), t → ∞.

1 Odd n: Differentiating
∫
∂B does not produce any t.

2 Even n: Since ϕ, ψ are compactly supported in BR , we have∫
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and again differentiating
∫
B does not produce any t.
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Morawetz’s works

Now consider the wave equation □u = 0 in R+ × (Rn \ Ω) with
compactly supported smooth initial data and Robin boundary
condition Λu = 0 on ∂Ω.

Theorem 3

(Energy conservation.) The total energy
E (u) := ||ut(·, x)||2L2(Rn) + ||∇u(·, x)||2L2(Rn) is constant in time.

Theorem 4

(Finite propagation speed.) If u solves{
□u = 0

u(0, x) = ϕ, ut(0, x) = ψ
then u(t ′, x ′) only depends on the

values of ϕ and ψ in the cone {|x − x ′| ≤ t ′}. Equivalently, if
(ϕ, ψ) = (0, 0) in {|x − x ′| ≤ t ′}, then u ≡ 0.
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Multiplier method

Let Λ = Id. Set R′ = [0,T ]× Ω be a cylinder in spacetime.
Consider ∫

R′
□u(xj∂ju + tut + u)dxdydzdt = 0

and integrate by parts. Obtain terms such as∫ T

0

∫
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as Ω is star-shaped. Eventually we get the energy estimate

t

∫
R′

|∇u|2 + u2t dxdydzdt < K .
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From energy decay to wave decay

Since ut also solves the initial-boundary value problem with Λ = Id,
we have

t

∫
R′

u2ttdxdydzdt < K .

Moreover, Morawetz proved that

|u(t, x1, x2, x3)| ≤ K1
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) 1
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and we can uniquely write u = wt where w satisfies

t
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w2
t dxdydz < K ′.

Thus |u(t, x1, x2, x3)| = O(t−
1
2 ).
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Exponential decay

Denote E (u,D, t) the energy carried by u in D ⊂ R3 at time t.

Theorem 5 (Morawetz, 1966)

Fix D ⊂ R3 and suppose that there exists p ∈ C0(R3 \ Ω)
satisfying the energy inequality

E (u,D, t) < p(t)E (u,∞, 0) := p(t)E (u). (1)

Then if suppE (u,D, t) ⊂ Br0 for some r0 > 0 and
E (u,D, 0) ⊂ B3ρ for some ρ > 0, we have the estimate

E (u,D, t) < βe−αtE (u) (2)

where α = − 1
T log[kp(T )] > 0 for some T > 0, k is a constant

that depends on the shape of Ω, and β = k exp(α(r0 + ρ+ δT ))
for some δ ∈ [0, 1].
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Vector field method

Definition 6

Consider the following class of vector fields:

Γ ∈ {∂t , ∂x , xi∂j −xj∂i =: Ωij , t∂t+xi∂i =: S , t∂i +xi∂t =: Ω0i}.

Those vector fields commute with □.

Idea: Use a weighted ”Sobolev embedding” to get time decay.

Theorem 7

(Klainerman, 1985.) Let u ∈ H⌊ n+2
2

⌋. Then there exists C = C (n)
such that for

sup
x
(1+t+r)

n−1
2 (1+ |t−r |)

1
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∑
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2
⌋

||Γαu||L2(Rn)(t).
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Some derivatives decay faster!

Definition 8

Define the radial derivative ∂v := ∂r +∂t and the angular derivative

|∇̂u|2 := 1

2

n∑
i=1

n∑
j=1

(xi
r
∂ju −

xj
r
∂iu
)2
.

The derivative ∂u we want to consider is given by
|∂u|2 := (∂vu)

2 + |∇̂u|2.

Theorem 9

Suppose that u satisfies □u = 0 with initial data compactly
supported in the ball BR . Then there exists C = C (n,R) > 0 such
that

(1+ t+ r)
n+1
2 (1+ |t− r |)−

1
2 |∂u| ≤ C

∑
|α|≤⌊ n+4

2
⌋

||∂Γαu||L2(Rn)(t = 0).
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Local-in-time existence

If F = F (u, ∂u), then □u = F has a local-in-time C 2-solution.

Theorem 10

Consider the nonlinear wave equation{
∂α(a

αβ(u)∂βu) = F (u, ∂u)

u(0, x) = ϕ ∈ Hn+2(Rn), ut(0, x) = ψ ∈ Hn+1(Rn).
(3)

where aαβ(u) are all smooth functions of u. Then there exists
T > 0 depending on ||ϕ||Hn+2(Rn) and ||ψ||Hn+1(Rn) such that there

exists a solution u ∈ C 2([0,T ]× Rn) to (3) with
u ∈ L∞([0,T ];Hn+2(Rn)) and ut ∈ L∞([0,T ];Hn+1(Rn)).
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Global-in-time existence

Theorem 11

Let ϵ > 0 and let k ≥ 6. Consider the wave map equation
u : R+ × Rn → Sn given by

□u = u(∂tu
T∂tu − ∂ju

T∂ju). (4)

If n = 4 and we have smooth initial data u(0, x) = ϕ(x),
ut(0, x) = ψ(x) that are compactly supported in BR . Moreover,
suppose that the initial data are small in the following L2−sense:∑

|α|≤k

||∂∂αϕ||L2(R4) + ||∂αψ||L2(R4) < ϵ. (5)

Then for all R > 0, there exists ϵ0 = ϵ0(R) > 0 such that a
smooth solution u is smooth for all t if ϵ ≤ ϵ0.
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Similar results in R+ × R3?

The global-in-time result fails for R+ × R3.

Theorem 12

(John, 1981.) All non-trivial (smooth) solutions to □u = u2t with
smooth and compactly supported initial data blow up in time.

Nonetheless:

Theorem 13

(Klainerman–Nirenberg, 1980.) Let ϕ, ψ be compactly supported.
Then there exists a sufficiently small ϵ > 0 such that the system{

□u = u2t −
∑3

j=1(∂ju)
2

u(0, x) = ϵϕ(x), ut(0, x) = ϵψ(x)

has a smooth global-in-time solution in R+ × R3.
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Null condition

Definition 14

Let qαβ be constants and let ϕ, ψ ∈ C∞. The bilinear form
Q(ϕ, ψ) := qαβ∂αϕ∂βψ is a null form if for all ξ ∈ Rn we have

ηαβξαξβ = 0 =⇒ qαβξαξβ = 0. (6)

Example 15

Q(u, u) = u2t is not a null form, but Q(u, u) = u2t −
∑3

j=1(∂j)
2u is.
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Global existence in R+ × R3

For null forms we have the following estimate:

Lemma 16

There exists C > 0 such that

|Q(ϕ, ψ)| ≤ C (|∂ϕ||∂ψ|+ |∂ψ||∂ϕ|). (7)

As a result:

Theorem 17

Under the same assumptions as in Theorem 11, the wave map
equations (4) still has a global-in-time smooth solution in R+×R3.
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