Going Home While Drunk

Discrete-Time Random Walk on \mathbb{Z}^{d} Lattices

Zhang Ruiyang
University College London
ruiyang.zhang.20@ucl.ac.uk

5 Nov 2020

Abstract

This will be a talk on the nature of discrete-time random walks on \mathbb{Z}^{d} lattice, also known as the Pólya Recurrence Theorem. We will start by introducing the basics of Markov chains and explain what does it mean for a state to be recurrent and transient. Later on, we will show a proof of the theorem, and explain why the random walk is recurrent when $d=1,2$, and transient when $d \geq 3$. It is aimed to be as self-contained as possible.
"A drunk man will find his way home, but a drunk bird may get lost forever."

- Shizuo Kakutani

Basic Definitions (1)

- State space I is a countable set with each $i \in I$ as a possible state. It is countable since we are working with discrete-time.
- Distribution on I is a collection $\lambda=\left(\lambda_{i}, i \in I\right)$ with λ_{i} for all i, and $\sum \lambda_{i}=1$ due to normality.
- Working in the probability space (Ω, \mathcal{F}, P) : sample space Ω, events \mathcal{F} and probability measure P.
- For a random variable $X: \Omega \rightarrow I$, we have $\lambda_{i}=P(X=i)$.
- Stochastic matrix $P=\left(p_{i j}: i, j \in I\right)$ with every row $\left(p_{i j}: j \in I\right)$ being a distribution. (Not the probability measure P)

Basic Definitions (2)

$\left(X_{n}\right)_{n \geq 0}$ is a Markov chain with initial distribution λ and transition matrix P if for $n \geq 0$ and $i_{0}, \ldots, i_{n+1} \in I$, we have
(1) $P\left(X_{0}=i_{0}\right)=\lambda_{i_{0}}$
(2) $P\left(X_{n+1}=i_{n+1} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=p_{i_{n} i_{n+1}}$
which we will then call it $\operatorname{Markov}(\lambda, P)$ in short.
For any particular combination of positions of states X_{0} to X_{N} for an integer N,

$$
\begin{aligned}
& P\left(X_{0}=i_{0}, \ldots, X_{N}=i_{N}\right) \\
& =P\left(X_{0}=i_{0}\right) P\left(X_{1}=i_{1} \mid X_{0}=i_{0}\right) \cdots P\left(X_{N}=i_{N}, \mid X_{0}=i_{0} \ldots, X_{N-1}=i_{N-1}\right) \\
& =\lambda_{i_{0}} p_{i_{0} i_{1}} \cdots p_{i_{N-1} i_{N}} .
\end{aligned}
$$

Example of a Markov Chain

The state space I is $\{1,2,3\}$, and let the initial distribution be $\lambda=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. For example, using the diagram, we can get

$$
\begin{aligned}
P\left(X_{0}=1, X_{1}=3, X_{2}=3, X_{3}=2\right)= & P\left(X_{0}=1\right) P\left(X_{1}=3 \mid X_{0}=1\right) \\
& P\left(X_{2}=3 \mid X_{1}=3\right) P\left(X_{3}=2 \mid X_{2}=3\right) \\
= & \frac{1}{3} \cdot 1 \cdot \frac{2}{3} \cdot \frac{1}{3}=\frac{2}{27} .
\end{aligned}
$$

Markov Property

Property of "memoryless" - the past does not depend on the future, only the current state does.

Let $\left(X_{n}\right)_{n \geq 0}$ be $\operatorname{Markov}(\lambda, P)$. Then, condition on $X_{m}=i,\left(X_{m+n}\right)_{n \geq 0}$ is $\operatorname{Markov}\left(\delta_{i}, P\right)$ and is independent of the random variables X_{0}, \ldots, X_{m} where $\delta_{i}=\left(\delta_{i j}: j \in I\right)$ is the unit mass at i where $\delta_{i j}=1$ if $i=j$ and 0 otherwise. Equivalently,

$$
P\left(X_{n+1}=i_{n+1} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right)=p_{i_{n} i_{n+1}} .
$$

"Life is like a Markov chain, your future only depends on what you are doing now, and independent of your past."

Transition over Multiple Steps

The probability of going from state i and get to state j in two steps is

$$
\sum_{k \in I} p_{i k} p_{k j}
$$

Using some knowledge from Linear Algebra, we can summarise all two-step transitions using P^{2} of the stochastic matrix P. This can be extended to n-step transition of P^{n}. We can generalise the process to get the ChapmanKolmogorov equation:
(1) $p_{i k}^{n+m}=\sum_{j \in I} p_{i j}^{n} p_{j k}^{m}$.
(2) $p_{i j}^{n}=\left(P^{n}\right)_{i, j}$.

Recurrent and Transient

Recurrent: A state will be recurrent if it has been visited for infinite many times as the chain develops and $P\left(X_{n}=i\right.$ for infinite many $\left.n\right)=1$. We can also write it as a state i is recurrent if and only if $\sum_{n=0}^{\infty} p_{i i}^{n}=\infty$.

Transient: A state has stopped being visited after the chain develops to a certain stage and $P\left(X_{n}=i\right.$ for infinite many $\left.n\right)=0$. We can also write it as a state i is transient if and only if $\sum_{n=0}^{\infty} p_{i i}^{n}<\infty$.

Random Walk

- A random walk is a stochastic process that describes a path that consists of a succession of random steps on some mathematical space.
- Common spaces: graphs, \mathbb{Z}^{d} lattice, \mathbb{R}^{d}, plane or higher-dimensional vector spaces, curved surfaces or higher-dimensional Riemannian manifolds etc.
- First introduced by Karl Pearson in 1905.

On \mathbb{Z}^{1} Lattice (Gambler's Ruin)

At state i, let the rate of going to $i+1$ be p and that of going to $i-1$ be q where $0<p=1-q<1$.

Starting at 0 , we can only return to 0 after even number of steps, and $p_{00}^{2 n+1}=0$ $\forall n \in \mathbb{N}$. For $2 n$ steps, to return to 0 , we need exactly n steps to $i+1$ and n to $i-1$. The probability of a possible such path is $p^{n} q^{n}$, and there are $\binom{2 n}{n}$ of them.

$$
p_{00}^{2 n}=\binom{2 n}{n} p^{n} q^{n}
$$

Theorem (Stirling's Formula)

$n!\sim A \sqrt{n}(n / e)^{n}$ as $n \rightarrow \infty$ for some $A \in[1, \infty)$

On \mathbb{Z}^{1} Lattice (Gambler's Ruin)

Applying the Stirling's Formula, we get

$$
\begin{aligned}
p_{00}^{2 n} & =\binom{2 n}{n} p^{n} q^{n} \\
& =\frac{(2 n)!}{(n!)^{2}}(p q)^{n} \\
& \sim \frac{A \sqrt{2 n}(2 n / e)^{2 n}}{\left(A \sqrt{n}(n / e)^{n}\right)^{2}}(p q)^{n} \\
& =\frac{A \sqrt{2 n}(2 n / e)^{2 n}}{A^{2} n(n / e)^{2 n}}(p q)^{n} \\
& =\frac{(4 p q)^{n}}{A \sqrt{n / 2}} \text { as } n \rightarrow \infty .
\end{aligned}
$$

On \mathbb{Z}^{1} Lattice (Gambler's Ruin)

Symmetric Case ($p=q=1 / 2$)
$4 p q=1$. So, for some N and all $n \geq N$ we have

$$
p_{00}^{2 n} \sim \frac{1}{A \sqrt{2 n}} \geq \frac{1}{2 A \sqrt{n}}
$$

so

$$
\sum_{n=N}^{\infty} p_{00}^{2 n} \geq \frac{1}{2 A} \sum_{n=N}^{\infty} \frac{1}{\sqrt{n}}=\infty
$$

as $\sum_{n=N}^{\infty} \frac{1}{\sqrt{n}}$ diverges. This implies that symmetric random walk on \mathbb{Z}^{1} is recurrent.

Non-Symmetric Case ($p=q \neq 1 / 2$)
$4 p q=r<1$. Similarly, for some N

$$
\sum_{n=N}^{\infty} p_{00}^{2 n} \leq \frac{1}{A} \sum_{n=N}^{\infty} r^{n}<\infty
$$

which implies that symmetric random walk on \mathbb{Z}^{1} is transient.

On \mathbb{Z}^{2} Lattice (Drunk Man)

Assume symmetry (the probability of going in any of the four directions is $1 / 4$) of the walk. We have

$$
p_{i j}= \begin{cases}1 / 4 & \text { if }|i-j|=1 \\ 0 & \text { otherwise }\end{cases}
$$

Two independent symmetric random walks X_{n}^{+}and X_{n}^{-}on $2^{-1 / 2} \mathbb{Z} . X_{n}=0$ if and only if $X_{n}^{-}=X_{n}^{+}=0$.

By Stirling's formula,

$$
\begin{gathered}
p_{00}^{2 n}=\left(\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n}\right)^{2} \sim \frac{2}{A^{2} n} \text { as } n \rightarrow \infty . \\
\sum_{n=0}^{\infty} \frac{1}{n}=\infty \Longrightarrow \sum_{n=0}^{\infty} p_{00}^{n}=\infty .
\end{gathered}
$$

The walk is recurrent.

On \mathbb{Z}^{3} Lattice (Drunk Bird)

$$
p_{i j}=\left\{\begin{array}{l}
1 / 6 \text { if }|i-j|=1 \\
0 \text { otherwise } .
\end{array}\right.
$$

Only be back to the origin after even number of steps. \#up = \#down, \#north = \#south, \#east = \#west. So,

$$
p_{00}^{2 n}=\sum_{\substack{i, j, k \geq 0 \\ i+j+k=n}} \frac{(2 n)!}{(i!j!k!)^{2}}\left(\frac{1}{6}\right)^{2 n}=\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n} \sum_{\substack{i, j, k \geq 0 \\ i+j+k=n}}\binom{n}{i j k}^{2}\left(\frac{1}{3}\right)^{2 n} .
$$

On \mathbb{Z}^{3} Lattice (Drunk Bird)

Since

$$
\binom{n}{i j k}\left(\frac{1}{3}\right)^{n}=1,
$$

let $n=3 m$ and we have

$$
\begin{gathered}
\binom{n}{i j k}=\frac{n!}{i!j!k!} \leq\binom{ n}{m m m} \quad \forall i, j, k . \\
p_{00}^{2 n} \leq\binom{ 2 n}{n}\left(\frac{1}{2}\right)^{2 n}\binom{n}{m m m}\left(\frac{1}{3}\right)^{n} \sim \frac{1}{2 A^{3}}\left(\frac{3}{n}\right)^{3 / 2} \text { as } n \rightarrow \infty .
\end{gathered}
$$

We know $\sum_{m=0}^{\infty} p_{00}^{6 m}$ converges by comparison with $\sum_{n=0}^{\infty} n^{-3 / 2}$. The walk is transient.

For $d \geq 4$, we can obtain from it a walk on \mathbb{Z}^{3} by looking only at the first 3 coordinates, and ignoring any transitions that do not change them. Since we know that random walk on \mathbb{Z}^{3} is transient, random walk on higher dimensions should be transient too. So, we have transience for all $d \geq 3$.

Summary

Pólya's Recurrence Theorem

- $d=1$: Gambler's Ruin. Recurrent.
- $d=2$: Drunk Man. Recurrent.
- $d=3$: Drunk Bird. Transient.
- $d>3$: Transient.
"A drunk man will find his way home, but a drunk bird may get lost forever."
- Shizuo Kakutani

Extensions

- Other possible proofs
- Random walk on graphs
- Random walk on manifolds
- Continuous-Time (Brownian Motion, if the walk is symmetric)
- Martingale
- Application in Finance

Reference

- Markov Chain - J. R. Norris
- My own notes on Elementary Probability Theory and Statistics

