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Theorem (Cohn-Vossen)

A complete non-compact manifold of dimension 2 with everywhere
non-negative (Riemannian) curvature is either diffeomorphic to R2

or is flat.

Theorem (Soul Theorem)

Let M be a complete non-compact manifold with non-negative
sectional curvature. Then M contains a compact, totally geodesic
and totally convex submanifold S whose normal bundle is
diffeomorphic to M.
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Theorem (Soul Conjecture)

Let M be a complete, connected and non-compact manifold with
sectional curvature K ≥ 0 and there exists a point in M where the
sectional curvature is strictly positive. Then the soul of M is a
point. Furthermore, M is diffeomorphic to Rn.
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Figure: Grigori Perelman
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Theorem (Perelman)

Let M be a complete non-compact manifold of non-negative
sectional curvature, let S be the soul of M and let P : M → S be a
distance non-increasing retraction. Then

1 For all x ∈ S, ν ∈ SN(S), we have

P(expx(tν) = x , ∀t ≥ 0

2 For any geodesic γ ⊂ S and vector field ν ∈ Γ(SN(S)) parallel
along γ the ’horizontal curves’ γt ; γt(u) = expγ(u)(tν) are
geodesics, filling a totally geodesic flat strip (t ≥ 0).
Moreover, if γ[u0, u1] is minimising, then all γt [u0, u1] are also
minimising.
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