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Chapter 1

Introduction

Markov process is a class of stochastic processes, usually in continuous time, that satisfies the
Markov property. A stochastic process is a sequence of random variables indexed by time, and
here we will usually denote it as {Xt}t∈R+ . The subscript t denotes time, and if we are working
in discrete time we will usually use the letter n instead to denote the step number. The Markov
property states that the behaviour of the future, condition on the current behaviour, will be
independent of the past. A more mathematical formulation of these things will appear later this
chapter.

In the rest of this chapter, we will go over some background material on functional analysis,
Markov process, and Kolmogorov equations as well as the Fokker-Planck equation. They will
prepare ourselves with the discussions in the following chapters.

In Chapter 2, we will go over three basic types of Markov processes, i.e. the deterministic
process, the jump process, and the diffusion process. A lot of the common Markov processes can
be constructed using some of the three types. We will study some properties of these processes,
such as their generator and their invariant. We will also mention two composite processes - the
Langevin diffusion and the piecewise deterministic Markov process. These two processes are of
special interest to us as they can be used to be the underlying Markov chain of some Markov
chain Monte Carlo algorithms, which is the topic of the next chapter.

In Chapter 3, we will study the Markov chain Monte Carlo algorithms. Two classes of algorithms
will be highlighted. The first class is algorithms using Langevin diffusions, while the second class
is algorithms using piecewise deterministic Markov processes. We will discuss the design of these
algorithms, and mention some basic theoretical properties of them. The first class of algorithms
has been studied for decades, whereas the second class are only introduced fairly recently.

1.1 Functional Analysis Basics

In this section, we will present superficially some definitions and facts about basic functional
analysis and operator theory to straighten out the notations. A more comprehensive discussion
of functional analysis can be found in Conway (2019).

Let X be a vector space over R.

Definition 1.1. A norm is a function ∥ · ∥ : X → [0,∞) such that
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1. ∥x∥ = 0 ⇐⇒ x = 0
2. ∥λx∥ = |λ|∥x∥ for all λ ∈ R and x ∈ X
3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

Given this norm, we can then induce a metric d if we let d(x, y) := ∥x− y∥ for all x, y ∈ X.

An important property that we would like to have is completeness. A normed space (i.e. a vector
space equipped with a norm) is complete if every Cauchy sequence converges.

Definition 1.2. A Banach space (X, ∥·∥) is a normed space that becomes complete with respect
to the induced metric d.

Definition 1.3. A vector space X is an inner product space if there exists a function, known
as the inner product, ⟨·, ·⟩ : X ×X → R such that

1. ⟨x, x⟩ ≥ 0 for all x inX
2. ⟨x, x⟩ = 0 ⇐⇒ x = 0
3. ⟨λx+ µy, z⟩ = λ⟨x, z⟩+ µ⟨y, z⟩ for all λ, µ ∈ R and x, y, z ∈ X.
4. ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ X.

Given an inner product ⟨·, ·⟩ we can induce a norm ∥ · ∥ by setting ∥x∥ =
√
⟨x, x⟩. To verify

this function is indeed a norm, we would need to use the Cauchy-Schwarz-Buniakovski
inequality, which states that |⟨x, y⟩| ≤ ∥x∥ · ∥y∥ for all x, y ∈ X.

A space is complete if every Cauchy sequence in this space converges. A normed space that is
complete is known as the Banach space. Now that we have an inner product space, we would
have the following definition.

Definition 1.4. An inner product space (X, ⟨·, ·⟩) is a Hilbert space if it is complete in the
induced norm ∥ · ∥.

We will use H to denote an arbitrary Hilbert space. Among them, there are two Hilbert spaces
that we will be using extensively in the following. The first is the space L2(R), defined by

L2(R) :=
{
measurable f : R → R

∣∣∣ ∫ f2(x)dx <∞
}

and it is equipped with inner product ⟨f, g⟩ =
∫
R f(x)g(x)dx. The second is the space L2(π) for

some (probability) measure π, defined by

L2(π) :=

{
measurable f : R → R

∣∣∣ ∫ f2dπ <∞
}

and it is equipped with inner product ⟨f, g⟩µ =
∫
R fgdµ.

Theorem 1.5. Let X,Y be normed spaces with norms ∥ · ∥X and ∥ · ∥Y respectively, and A :
X → Y . The following are equivalent:

1. A is continuous
2. A is continuous at any point
3. A is continuous at 0
4. there exists constant c > 0 such that ∥Ax∥Y ≤ c∥x∥X for all x ∈ X.

We would also say A is a bounded operator.

For a space X, we will use B(X) to denote the set of bounded operators A : X → X. The last
formulation in the above theorem helps us to define the norm of an operator.

3



Definition 1.6. For a bounded operator A, we can define ∥A∥ in the following equivalent ways:

1. inf{c > 0 | ∥Ax∥Y ≤ c∥x∥X for all x ∈ X}
2. inf{c > 0 | ∥Ax∥Y ≤ c for all possible ∥x∥ ≤ 1}
3. supx∈X,x ̸=0

∥Ax∥Y

∥x∥X

4. supx∈X,x ̸=0,∥x∥≤1 ∥Ax∥Y .

In particular, we have ∥Ax∥ ≤ ∥A∥ · ∥x∥ for all x ∈ X.

Definition 1.7. Let A ∈ B(H). Then there exists unique operator A∗ ∈ B(H) such that
⟨Ax, y⟩ = ⟨x,A∗y⟩ for all x, y ∈ H. We will call A∗ the adjoint of A. An operator A ∈ B(H) is
called self-adjoint or symmetric if A = A∗. Note that self-adjoint and symmetric are possibly
different when the operator is unbounded.

1.2 Markov Processes and Semigroups

A Markov process is any stochastic process {Xt} that satisfies the Markov property.

Definition 1.8. A stochastic process {Xt} is a Markov process if the increment Xt − Xs

(assuming t > s) is independent of Xu for all u < s.

Each element of the sequence {Xt} is a random variable. A random variable, using the language of
measure-theoretic probability theory, is a real-valued measurable function defined on the sample
space. Here, each Xt is a measurable function that maps from the sample space to the state
space R. Notice that we can also call a Markov process as a Markov chain, which is a broader
term if we use it loosely, and a narrower term (a discrete-time Markov process with finite state
space) if we use it specifically. In this note, we will use the terms ‘Markov process’ and ‘Markov
chain’ interchangeably.

We are interested in the behaviour of the process over time.

Definition 1.9. The transition function p(B, t|x, s), with t ≥ s, of the Markov process {Xt}
is defined as

p(B, t|x, s) := P(Xt ∈ B|Xs = x)

where B is a Borel set of R. This function with varying B is a probability measure, and it with
varying x is a measurable function. Furthermore, the transition function is called a transition
kernel if it admits a density, i.e.

p(B, t|x, s) =
∫
B

p(dy, t|x, s) =
∫
B

p(y, t|x, s) dy.

An important property of the transition function is that it can be broken down into steps.
Intuitively, assuming we have timestamps a ≤ b ≤ c, the movement from Xa to Xc should be
the same as the combination of movements from Xa to all possible intermediate steps Xb then
to Xc. Mathematically, we have

p(B, t|x, s) =
∫
R
p(dy, u|x, s) · p(B, t|dy, u), s ≤ u ≤ t

and this is known as the Chapman-Kolmogorov equation.

Definition 1.10. A stochastic process {Xt} is called time-homogeneous, or simply homoge-
neous, if the transition function depends only on the difference in time, i.e. p(B, t|x, s) = p(B, t+
k|x, s+ k) for any constant k. A process without this property is called time-inhomogeneous.
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For a homogeneous Markov process, we will denote its transition kernel simply as p(t, x,B),
where

p(t, x,B) := p(B, t|x, 0) = p(B, t+ k|x, k)

for any t, k ≥ 0.

The movement of a homogeneous Markov process over time can be viewed as an operator. For
t ≥ 0, we define the operator Pt on some nice class (to be specified later) of functions f as

Ptf(x) := Ex[f(Xt)] = E[f(Xt)|X0 = x] =

∫
R
f(y)p(t, x, dy)

Clearly, using this definition, we can notice that P0 = Id. Some more, we have

∥Ptf∥ =

∥∥∥∥∫
R
f(y)p(t, x, dy)

∥∥∥∥ ≤ ∥f∥
∥∥∥∥∫

R
f(y)p(t, x, dy)

∥∥∥∥ = ∥f∥

so ∥Pt∥ ≤ 1 and this operator is a contraction. Additionally, we notice that Ps ◦Pt = Ps+t, using
the Chapman-Kolmogorov Equation. To see this, for any suitable f and x, we have

Ps ◦ Ptf(x) = Ps

∫
y∈R

f(y)p(t, x, dy)

=

∫
z∈R

p(s, x, dz)

∫
y∈R

f(y)p(t, z, dy)

=

∫
z∈R

∫
y∈R

p(s, x, dz)f(y)p(t, z, dy)

=

∫
y∈R

∫
z∈R

f(y)p(s, x, dz)p(t, z, dy)

=

∫
y∈R

f(y)

∫
z∈R

p(s, x, dz)p(t, z, dy)

=

∫
y∈R

f(y)p(t+ s, x, dy) = Pt+sf(x).

The Markov process might begin behaving strangely, yet after some time it might start to have
some nice pattern and become stabilised.

Definition 1.11. Given a probability measure µ and a Markov process {Pt}, we say µ is in-
variant for {Pt} if for any positive measurable function f and t ≥ 0, we have∫

Ptfdµ =

∫
fdµ.

Then, we would also say {Pt} is µ-invariant.

If we have a Markov process {Xt} starting at invariant distribution µ, we will always be following
this distribution as time goes on. To see this, we have

E[f(Xt)] = E[Ex[f(Xt)]] = E[E[f(Xt)|X0 = x]]

= E[Ptf(x)] =

∫
Ptf(x)dµ

=

∫
f(x)dµ = E[f(X0)].
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These properties give {Pt} a nice structure. In fact, these (along with a few others) imply that
{Pt} is a Markov semigroup (Bakry et al.; 2014).

Definition 1.12. A family of operators {Pt}t∈R+ defined on the bounded measurable functions
on a state space (E,F) with stationary measure µ is called a Markov semigroup. It satisfies
the following properties: for all p ≥ 1, t, s ∈ R+, α, β ∈ R, bounded measurable functions f, g,
we have

1. For any t, Pt sends bounded measurable functions to bounded measurable functions.
2. (initial) P0 = Id.
3. (conservation) Pt1 = 1 almost surely.
4. (contraction) ∥Ptf∥p ≤ ∥f∥p
5. (linearity) Pt(αf + βg) = αPtf + βPtg almost surely
6. (semigroup) Pt+sf = PtPsf almost surely.
7. (continuity) For every f ∈ L2(µ), Ptf converges to f in this space as t→ 0.

Given a semigroup, we can define its generator, which is an important concept and its significance
will be revealed later on.

Definition 1.13. The (infinitesimal) generator L is defined as

Lf := lim
t→0+

Ptf − f

t

for every f ∈ L2(µ) for which the above limit exists in L2(µ). The set of f for which this limit
is well defined is called the domain of L, or Dom(L). So, L defines a linear operator from
Dom(L) ⊆ L2(µ) to L2(µ).

Remark. The domain is usually not the whole space. This is a technical detail that we will not
worry about in this notes. Usually, any domain issue only requires some additional technicalities
to be remedied.

1.3 Kolmogorov Equations and Fokker-Planck Equation

Given an operator and the space it acts on, we can define its adjoint. Consider a Markov
semigroup {Pt} with generator L, we can define the adjoint of the generator in L2(R) as, for any
suitable f, g ∈ L2(R),

⟨Lf, g⟩ =
∫

Lf(x)g(x) dx =

∫
f(x)L∗g(x) dx = ⟨f,L∗g⟩.

Additionally, we have the transition kernel p(t, x,B) for a time-homogeneous Markov process.

The Kolmogorov Forward Equation is, for any suitable function f ,

d

dt
Ptf = PtLf, (1)

where as the Kolmogorov Backward Equation is

d

dt
Ptf = LPtf. (2)

The Fokker-Planck Equation is
∂

∂t
pt = L∗pt. (3)
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where pt is the transition kernel p(t, x,B).

These three (in fact two of them are equivalent) equations allow us to study the evolution over
time of the Markov process. These partial differential equations have a profound impact on
various fields, such as engineering and physics. There are also extensive studies of the Fokker-
Planck equation, see the monograph Risken (1996).

It can be shown that the Fokker-Planck equation is equivalent to the Kolmogorov forward equa-
tion. Because of this, we would normally not distinguish the two. We will prove this for the
time-homogeneous case.

Proposition 1.14. The Fokker-Planck equation is equivalent to the Kolmogorov forward equa-
tion.

Proof. Consider a time-homogeneous Markov process {Xt} with associated Markov semigroup
{Pt} and generator L. For suitable function f , we have operator Ptf defined as

Ptf = E[f(Xt)]

and
Ptf(x) = E[f(Xt)|X0 = x].

We will use pt to denote the transition density of {Xt}. Also, L∗ is the adjoint of L in L2(R), so

⟨Lf, g⟩ =
∫

Lf(x)g(x) dx =

∫
f(x)L∗g(x) dx = ⟨f,L∗g⟩.

We have, using the Kolmogorov forward equation,

d

dt
Ptf = PtLf = E[Lf(Xt)] =

∫
Lf(x)pt(x) dx =

∫
L∗pt(x)f(x) dx,

d

dt
Ptf =

d

dt
E[f(Xt)] =

d

dt

∫
f(x)pt(x) dx =

∫
∂

∂t
pt(x)f(x) dx.

Combining the two yields∫
L∗pt(x)f(x) dx =

∫
∂

∂t
pt(x)f(x) dx⇐⇒

∫
[L∗pt(x)−

∂

∂t
pt(x)]f(x) dx = 0

which holds for any suitable f . We claim that there would be a sufficiently large class of such
functions for the derivation to hold. This then implies

L∗pt(x)−
∂

∂t
pt(x) = 0 ⇐⇒ L∗pt(x) =

∂

∂t
pt(x),

which is the Fokker-Planck equation.

Thus, we have established the equivalence of the two equations, as each of the above steps is
equivalence.

We will revisit the Fokker-Planck equation when we discuss the diffusion process in the next
chapter.
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Chapter 2

Markov Processes

2.1 Deterministic Process

A deterministic process is a Markov process with its path fully characterised by an ordinary
differential equation (ODE) and some initial condition. If we denote a deterministic process by
{Xt}, we have

d

dt
x(t) = h(x(t))

for all t ≥ 0, and X0 = x0. The stationary measure of this process is denoted as µ.

First, we should notice that this process satisfies the Markov property. Given {Xr}r≤s, we have

Xt = Xs +

∫ t

s

h(x(u)) du

for all t ≥ s, and this quantity only depends on the information at t = s and is independent of
the past, as desired. The path of this Markov process is simply smooth, as shown in Figure 1
below.

Figure 1: Path of a Deterministic Process
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Based on the construction of {Xt}, we can define the operator Pt, which is, for some f ∈ L2(µ),

Ptf(x) = f(x) +

∫ t

0

df

ds
(x(s)) ds,

df(x(s))

ds
=
df

dx
· dx(s)
ds

.

So, we can apply the definition of the generator to Pt, and get

Lf(x) = lim
t→0+

Ptf(x)− f(x)

t

= lim
t→0+

1

t

∫ t

0

df

ds
(x(s)) ds

=
df

dt
(x(t))

=
df

dx
· dx(t)
dt

.

Notice that the generator L is not well-defined for any f ∈ L2(µ). Anything that is in L2(µ)
but not differentiable would be such a case, and an example would be f(x) = sin(1/x2). This
means, Dom(L) ̸= L2(µ).

Next, we will derive the adjoint L∗ of L in L2(R). We have, for suitable1 f, g with compact
supports (so they decay to zero at infinities),

⟨Lf, g⟩ =
∫

Lf(x)g(x)dx

=
dx(t)

dt
· df
dx
g(x)dx

=

∫
g(x)h(x) · ∇f(x)dx

= [ghf ]∞−∞ −
∫
f(x)∇[g(x)h(x)]dx

=

∫
f(x)∇[−g(x)h(x)]dx = ⟨f,L∗g⟩

so the adjoint is L∗g(x) = ∇[−g(x)h(x)].

2.2 Jump Process

A jump process is a Markov process that stays constant when there is no event, and takes a
“jump” (change in value) at event time T , which is an exponentially distributed random variable.
To be more precise, here is how we would simulate one jump of a jump process with stationary
measure µ, given a rate function λ(·), a transition kernel J(·, ·), and an initial distribution f .

1. Draw initial state X0 ∼ f ,
2. Denote the current state by x.
3. Draw a time T ∼ Exp[λ(x)].
4. Draw X0+T ∼ J(x, ·).
1We will not worry about the existence of such suitable functions, as this could be verified but requires various

technical results. We will hand-wave at such instances many times later too.
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5. Set Xt = x for all t < T .

The path to this process is, as one can infer from the construction, piecewise constant. The path
will consist of pieces of right-continuous constants, as shown in Figure 2 below.

Figure 2: Path of a Jump Process

Based on the construction of {Xt}, we can derive its operator Pt for some f ∈ L2(µ). Consider
some small δ > 0, we have

Pδf(x) =

{∫
f(y)J(x, dy) with probability δλ(x) + o(δ)

f(x) with probability 1− δλ(x) + o(δ)

since at most one event can happen during a small enough interval (Norris; 1998). Note that
here we say f(x) = o(x) if limx→0 f(x)/x = 0. The first case above happens when T ≤ δ, so we
have

P(T ≤ δ) =

∫ δ

0

λ(x) exp[−λ(x)t] dt = 1− exp[−λ(x)δ].

Using Taylor expansion, we have

1− exp[−λ(x)δ] = 1−
∞∑

n=0

(−λ(x)δ)n

n!
= δλ(x) + o(δ).

The probability for the second case is

1− [1− exp[−λ(x)δ]] = exp[−λ(x)δ] = 1− δλ(x) + o(δ).

So, combining the two cases gives us

Pδf(x) = [1− δλ(x) + o(δ)]f(x) + [δλ(x) + o(δ)]

∫
f(y)J(x, dy).
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Using the operator Pδ, we can compute the generator of this semigroup.

Lf(x) = lim
δ→0+

Pδf(x)− f(x)

δ

= lim
δ→0+

1

δ

[
[1− δλ(x) + o(δ)]f(x) + [δλ(x) + o(δ)]

∫
f(y)J(x, dy)− f(x)

]
= lim

δ→0+

1

δ

[
[1− δλ(x)]f(x) + [δλ(x)]

∫
f(y)J(x, dy)− f(x)

]
= lim

δ→0+

1

δ

[
−δλ(x)f(x) + δλ(x)

∫
f(y)J(x, dy)

]
= −λ(x)f(x) + λ(x)

∫
f(y)J(x, dy)

= λ(x)

∫
[f(y)− f(x)]J(x, dy)

where the last equality is due to the fact that
∫
J(x, dy) = 1.

Next, we will derive the adjoint L∗ of L in L2(R). We will assume that J(x, dy) = j(x, y)dy. We
have, for suitably smooth f, g,

⟨Lf, g⟩ =
∫
x∈R

Lf(x)g(x)dx

=

∫
x∈R

λ(x)

∫
y∈R

[f(y)− f(x)]j(x, y)dyg(x)dx

=

∫
x∈R

λ(x)g(x)

∫
y∈R

[f(y)− f(x)]j(x, y)dydx

=

∫
x∈R

λ(x)g(x)

∫
y∈R

f(y)j(x, y)dydx−
∫
x∈R

λ(x)g(x)

∫
y∈R

f(x)j(x, y)dydx

=

∫
y∈R

∫
x∈R

λ(y)g(y)f(x)j(y, x)dxdy −
∫
x∈R

λ(x)g(x)f(x)

∫
y∈R

j(x, y)dydx

=

∫
x∈R

∫
y∈R

λ(y)g(y)f(x)j(y, x)dxdy −
∫
x∈R

λ(x)g(x)f(x)dx

=

∫
x∈R

f(x)

∫
y∈R

λ(y)g(y)j(y, x)dydx−
∫
x∈R

f(x)λ(x)g(x)dx

=

∫
x∈R

f(x)

[∫
y∈R

λ(y)g(y)j(y, x)dy − λ(x)g(x)

]
dy = ⟨f,L∗g⟩.

So, the adjoint L∗g(x) =
∫
y∈R λ(y)g(y)j(y, x)dy − λ(x)g(x).

2.3 Diffusion Process

Studying the diffusion process is slightly more involved than the previous two. It requires some
knowledge of Brownian motion, Itô integral and lemma, as well as stochastic differential equation
(SDE). We will cover the essentials of these topics in order to derive the generator of a one-
dimensional SDE, which is more general than a diffusion process. For a more comprehensive
study of the material in this section, we direct the readers to Øksendal (2013) and E et al.
(2021). Many definitions and results presented below follow these two texts quite closely.
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2.3.1 Brownian Motion

First, let us define what a Brownian motion, or Wiener process, is.

Definition 2.1. A stochastic process {Bt} is called a Brownian motion, or a Wiener pro-
cess, if it satisfies the following properties:

1. B0 = 0
2. Bt −Bs ∼ N(0, t− s) for all 0 ≤ s < t.
3. {Bt} has independent increment, i.e. for 0 ≤ s1 < t1 ≤ s2 < t2, Bt2 − Bs2 and Bt1 − Bs1

are independent random variables.
4. The graph of the process is continuous almost everywhere, but differentiable almost nowhere.

A Brownian motion is a scaling limit of random walk. Consider i.i.d. random variablesX1, X2, . . . ∼
αN(0, 1) = N(0, α2), and define

Sn =

n∑
i=1

Xi ∼ N(0, nα2).

If we let h := α2 and define time tn := nh = nα2, and then define B̃(tn) = Sn, we will have the
following properties about B̃t, i.e.

• B̃(tn) ∼ N(0, tn)

• B̃(tn)− B̃(sn) =
∑tn/h

i=sn/h+1Xi ∼ N(0, tn − sn) where 0 ≤ sn < tn.

Now, if we take h→ 0 while keeping t := tn as a constant (so we are taking the step size to zero
while the step number to infinity), we will get the desired Brownian motion by

B(t) = lim
h→0

B̃(tn = nh = t).

This construction is justified by the Donsker’s theorem (Karatzas et al.; 1991).

Notice that for some constant c > 0, if we defined a new stochastic process {Xt} by

Xt =
1√
c
Bct,

then it can be shown that {Xt} is a Brownian motion as well. This means, the Brownian motion
is self-similar, so it is impossible to plot the trajectory of a Brownian motion exactly. Instead,

we will always plot B̃ instead, for some suitably small h. This issue will pop up once again in
the next chapter.

A Brownian motion has some nice properties.

1. E(Bt) = 0
2. E(B2

t ) = t
3. E(BsBt) = min(s, t) = s ∧ t

The first two properties can be easily obtained by realising that Bt − B0 = Bt ∼ N(0, t − 0) =
N(0, t) for any t > 0. The third property is derived as follows: WLOG assume s < t, then

E(BsBt) = E[(Bt −Bs)Bs +B2
s ] = E[(Bt −Bs)Bs] + E[B2

s ] = E[(Bt −Bs)]E[Bs] + s = s.

12



2.3.2 Itô Calculus

A standard integral will have the form: ∫
f(x) dx.

A stochastic integral, however, will have the following form:∫
f(Bs, s) dBs.

A standard integral can be calculated by Riemann sum while f is Riemann integrable. For
stochastic integrals, we will mimic the Riemann sum. One major difference between stochastic
integrals and standard integrals is that the choice of endpoints of the Riemann sum does not
affect the value of the integral, whereas the choice of endpoints will affect the eventual value for
the case of stochastic integral.

The Itô integral is defined as follows:∫ t

0

f(Bs, s) dBs = lim
h→0

N∑
i=1

f(Bti , i)(Bti+1
−Bti)

where ti = (i− 1)h and N = t/h.

According to the definition of Itô integral, we can derive that∫ t

0

f(Bs, s) (dBs)
2 =

∫ t

0

f(Bs, s) ds.

The derivation of the above equality is slightly technical yet standard, so we will omit it here. It
can be viewed as a corollary of the Itô isometry. This equality can be expressed as (dBt)

2 = dt,
and we also have dBtdt = dt2 = 0. The derivation of the second equality is also omitted here,
though it can be derived similarly to the first one. To summarise, these two results, repeated
once again below, are known as the Itô increment rule.

• (dBt)
2 = dt

• dBtdt = dt2 = 0

With these, we can obtain the following important result.

Lemma 2.2 (Itô Lemma). For some suitable function f(Bt, t), we have df = (ft + fxx/2)dt +
fxdBt.

Proof. Using the Taylor expansion, we have

f(Bt+dt, t+ dt) = f(Bt, t) +
∂

∂x
f(Bt, t) dBt +

∂

∂t
f(Bt, t) dt+

1

2
(
∂2

∂x2
f(Bt, t) (dBt)

2 +
∂2

∂x∂t
f(Bt, t) dBtdt+

∂

∂t
f(Bt, t) dt

2) + · · ·

= f(Bt, t) +
∂

∂x
f(Bt, t) dBt +

∂

∂t
f(Bt, t) dt+

1

2

∂2

∂x2
f(Bt, t) dt,

13



which after some rearranging will yield

df = f(Bt+dt, t+ dt)− f(Bt, t)

=
∂

∂x
f(Bt, t) dBt +

∂

∂t
f(Bt, t) dt+

1

2

∂2

∂x2
f(Bt, t) dt

=

(
ft +

1

2
fxx

)
dt+ fxdBt.

We will show without proof the result on the expectation of stochastic integrals. This result can
be obtained by taking the expectation of the Itô integral directly.

Proposition 2.3. For any suitably smooth function f , we have

E
[∫ t

0

f(Bs, s)dBs

]
= 0.

2.3.3 Stochastic Differential Equation

A stochastic differential equation (SDE) is a stochastically perturbed differential equation. A
one-dimensional SDE has the following general form:

dXt = a(Xt, t)dt+ b(Xt, t)dBt

where a(Xt, t) is the drift of the process, and b2(Xt, t) is the diffusion of the process. This
characterises the stochastic process {Xt}. The above form is equivalent to the following:

Xt = X0 +

∫ t

0

a(Xs, s)ds+

∫ t

0

b(Xs, s)dBs.

If we consider Xt = f(Xt, t), so ft = 0, then we can obtain the Itô lemma for SDE.

f(Xt+dt, t+ dt) = f(Xt, t) +
∂

∂x
f(Xt, t) dXt +

∂

∂t
f(Xt, t) dt

+
1

2

(
∂2

∂x2
f(Xt, t) (dXt)

2 +
∂2

∂x∂t
f(Xt, t) dXtdt+

∂

∂t
f(Xt, t) dt

2

)
+ · · ·

According to the statement of the SDE, we have

dXtdt = a(Xt, t)dt
2 + b(Xt, t)dBtdt = 0

according to the Itô increment rule. Also, based on the definition, we have

(dXt)
2 = (a(Xt, t)dt+ b(Xt, t)dBt)

2

= a(Xt, t)
2dt2 + b(Xt, t)

2(dBt)
2 + 2a(Xt, t)b(Xt, t)dtdBt

= b(Xt, t)
2dt

by the Itô increment rule. Using these results, we can obtain the desired Itô lemma for SDE

df = fxdXt + ftdt+ 1/2fxx(dXt)
2,

df = (ft + afx +
1

2
b2fxx)dt+ bfxdBt.
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We have established sufficient background material to obtain the generator of the stochastic
process {Xt}. For some suitable function g(x), we know that gt = 0 and we have

Lg(x) = lim
s→0

1

s
[E[g(Xt+s) | Xt = x]− g(x)]

= lim
s→0

1

s
E[g(Xt+s)− g(Xt) | Xt = x]

=
1

dt
E[g(Xt+dt)− g(Xt) | Xt = x]

=
1

dt
E[dg(Xt) | Xt = x]

=
1

dt
E[(a(Xt, t)gx +

1

2
b2(Xt, t)gxx)dt+ b(Xt, t)gxdBt | Xt = x]

= a(x, t)gx +
1

2
b2(x, t)gxx

where the last equality is due to the fact that E[b(Xt, t)gxdBt] = 0.

A diffusion process is a stochastic process {Xt} characterised by the SDE

dXt = σ(Xt, t)dBt,

and thus it will have the generator

Lf(x) = 1

2
σ2(x, t)f ′′(x).

2.3.4 Fokker-Planck Equation

We will derive the Fokker-Planck equation of a one-dimensional SDE. Consider the SDE

dXt = a(Xt, t)dt+ b(Xt, t)dBt

with initial condition X0 = y, we would like to derive an evolution equation for the transition
density p(x, t) = p(x, t|y, 0).

For some smooth function f that depends only on Xt, using Itô lemma for SDE, df = fxdXt +
ftdt+ 1/2fxx(dXt)

2, we have

df = fxdXt +
1

2
fxx(dXt)

2

= fx(adt+ bdBt) +
1

2
fxx(b

2dt)

=

(
fxa+

1

2
fxxb

2

)
dt+ fxbdBt,

and integrating the above equation yields

f(Xt) = f(X0) +

∫ t

0

[
fxa+

1

2
fxxb

2

]
dt+

∫ t

0

fxbdBt.
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Next, consider E[f(Xt)], we have

d

dt
E[f(Xt)] =

d

dt
E
[
f(X0) +

∫ t

0

[
fxa+

1

2
fxxb

2

]
dt+

∫ t

0

fxbdBt

]
=

d

dt
E[f(X0)] +

d

dt
E
[∫ t

0

[
fxa+

1

2
fxxb

2

]
dt

]
+ E

[∫ t

0

fxbdBt

]
=

d

dt
E
[∫ t

0

[
fxa+

1

2
fxxb

2

]
dt

]
= E

[
fxa+

1

2
fxxb

2

]
=

∫
R

(
a(x, t)fx(x) +

1

2
b2(x, t)fxx(x)

)
p(x, t)dx

=

∫
a(x, t)fx(x)p(x, t)dx+

∫
1

2
b2(x, t)fxx(x)p(x, t)dx

=

∫
∂

∂x
[−a(x, t)p(x, t)]f(x)dx+

∫
1

2

∂2

∂xx
[b2(x, t)p(x, t)]f(x)dx

=

∫
f(x)

[
∂

∂x
[−a(x, t)p(x, t)] + 1

2

∂2

∂xx
[b2(x, t)p(x, t)]

]
dx

where the second last step above requires various integration by parts as well as the fact that
p, px → 0 as x→ ±∞ since p is a density.

Then, by definition, we have

d

dt
E[f(Xt)] =

d

dt

∫
R
f(x)p(x, t)dx =

∫
f(x)

∂

∂t
p(x, t)dx

and this, along with the result above gives us

∂

∂t
p(x, t) =

∂

∂x
[−a(x, t)p(x, t)] + 1

2

∂2

∂xx
[b2(x, t)p(x, t)]

by noticing that the equality of the two integrals holds for any f . This is the Fokker-Planck
equation, and it is the same as the form of Equation 3 in Section 1.3. To see this, as Equation 3
is

∂

∂t
p(x, t) = L∗p(x, t),

we just need to check the adjoint L∗ in L2(R). Here we will derive the adjoint using f, g ∈ L2(R)
with compact support, so f(x), g(x) → 0 as x→ ±∞. We have

⟨Lf, g⟩ =
∫
R
Lf(x)g(x)dx

=

∫ (
afx +

1

2
b2fxx

)
gdx

=

∫
agfxdx+

1

2

∫
b2gfxxdx

= −
∫
f(ag)xdx+

1

2
f(b2g)xxdx

=

∫
f

[
−(ag)x +

1

2
(b2g)xx

]
dx = ⟨f,L∗g⟩
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where the second last line is obtained by doing multiple integrations by parts as well as using
the fact that f, g have compact supports so they vanish at infinities. The above derivation yields
the adjoint L∗ is

L∗g = −(ag)x +
1

2
(b2g)xx

so

L∗p(x, t) = −(ap)x +
1

2
(b2p)xx =

∂

∂t
p(x, t),

as desired.

One of the many things the Fokker-Planck equation tells us is its steady solution. If ps(x) is a
solution to the equation

−(aps)x +
1

2
(b2ps)xx = 0

with some boundary conditions (for differential equations we always need to note the boundary
conditions) and p(x, t) → ps(x) as t → ∞ for all x, then ps(x) is the invariant density of the
SDE

dXt = a(Xt, t)dt+ b(Xt, t)dBt.

Thus, we can find the invariant density by solving the equation

(ag)x =
1

2
(b2g)xx, (4)

and we will use this fact multiple times in the following section, as well as study any Markov
chain Monte Carlo algorithm when we know their underlying stochastic processes.

2.4 Mix-N-Match

There are a lot of widely used Markov processes consisting of a combination of the three types
of processes discussed above. Among them are geometric Brownian motion (GBM) which has a
profound impact on mathematical finance as it is used to model stock prices in the Black–Scholes
model, and Ornstein-Uhlenbeck (O-U) process which has been used to model things in finance,
physics, and evolutionary biology. Here, we will focus on two particular models - the Langevin
diffusion and the piecewise deterministic Markov process (PDMP). This choice is motivated by
the strong relevance of these two processes with Markov chain Monte Carlo algorithms. This
link will be explained in detail in the next chapter.

2.4.1 Langevin Diffusion

The Langevin diffusion is an SDE with the following form

dLt =
1

2
∇ log π(Lt)dt+ dBt (5)

where π is differentiable and π > 0.

This equation characterises the stochastic (and Markov) process {Lt}. It has a deterministic
drift term and a diffusion term. Using previous derivations, we can easily obtain its generator
and the adjoint of the generator. We have

Lg = a(x, t)gx +
1

2
b2(x, t)gxx =

1

2
∇ log π(x)gx +

1

2
gxx

L∗g = −(ag)x +
1

2
(b2g)xx = −

(
1

2
∇ log π(x)g

)
x

+
1

2
gxx
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for some suitable function g.

The SDE has π as its invariant. To verify this, we know that by the Fokker-Planck equation, if
π satisfies

(aπ)x =
1

2
(b2π)xx

it would indeed be the invariant if we also have convergence to this density. We have

∂

∂x
aπ =

∂

∂x

1

2
∇ log π(Lt)π =

∂

∂x

1

2
∇π(Lt)

1

π
π =

∂

∂x

1

2
∇π(Lt) =

1

2
∇2π(Lt)

and
∂2

∂xx

1

2
b2π =

∂2

∂xx

1

2
b2π =

1

2
∇2π(Lt) =

∂

∂x
aπ,

as required. Here, π is a distribution so
∫
π = 1. In fact, cπ will satisfy this equation for

any constant c. This property would be quite handy when we consider MCMC algorithms that
revolve around Langevin diffusion.

To show that π is indeed the invariant density of the equation, we would also need to make
sure that Lt converges to π. This is indeed true under some mild conditions on π, as proved in
Roberts and Tweedie (1996).

Theorem 2.4 (Roberts and Tweedie (1996) Theorem 2.1). Suppose that ∇ log π(x) is continu-
ously differentiable and that, for some N, a, b <∞,

∇ log π(x) · x ≤ a|x|2 + b, |x| > N.

Then the Langevin diffusion Lt satisfies the following:

1. The diffusion is non-explosive, µLeb-irreducible, aperiodic, strong Feller and all compact
sets are small.

2. The measure π is invariant for {Lt} and, moreover, for all x,

∥P t
L(x, ·)− π∥ → 0.

Remark. Here, P t
L(x,A) = P(Lt ∈ A|L0 = x), and the metric ∥ · ∥ is the total variation norm.

2.4.2 Piecewise Deterministic Markov Process

The following discussion is based on Fearnhead et al. (2018). For a monograph-length discussion
of this process, the reader can check Davis (2018).

The d-dimensional piecewise deterministic Markov process (PDMP) {Zt} is a jump process with
deterministic motion between jumps. Between jumps, we have

d

dt
z
(i)
t = ϕi(zt)

where ϕ = (ϕ1, ϕ2, . . . , ϕd) is a known function. The solution of this ordinary differential equation
is denoted as

zs+t = ψ(zt, s)

for some function ψ. The jump will occur with rate λ(zt) when we are at zt. The proba-
bility of having an event in interval [t, t + h] is therefore λ(zt)h + o(h), where f(h) = o(h) if
limh→0f(h)/h = 0. If there is a jump at time τ , there would be a change in value. If we use zτ−
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to denote the position right before the jump, the position after the jump will be drawn from the
distribution q(·|zτ−).

We will first derive the generator of {Zt}, which we denote by A. For suitable f , we have

Af(z) = lim
h→0

E[f(Zt+h)|Zt = z]− f(z)

h

= ϕ(z) · ∇f(z) + λ(z)

∫
[f(z′)− f(z)]q(z′|z)dz′.

The adjoint A∗ in L2(R) can be obtained by considering the adjoint of each of the two terms
and then adding them up.

Proposition 2.5. (A1 +A2)
∗ = A∗

1 +A∗
2.

Proof. We will prove this proposition in R. The case in C is equally simple. We have, for any
suitable x, y,

⟨(A1 +A2)
∗x, y⟩ = ⟨x, (A1 +A2)y⟩

= ⟨x,A1y⟩+ ⟨x,A2y⟩
= ⟨A∗

1x, y⟩+ ⟨A∗
2x, y⟩

= ⟨(A∗
1 +A∗

2)x, y⟩.

So ⟨(A1 +A2)
∗x− (A∗

1 +A∗
2)x, y⟩ = 0 for any x, y, thus (A1 +A2)

∗ = A∗
1 +A∗

2, as desired.

So, we will let

A1f(z) := ϕ(z) · ∇f(z), A2f(z) := λ(z)

∫
[f(z′)− f(z)]q(z′|z)dz′.

Then, as derived in previous sections, we have

A∗
1f(z) = ∇[−f(z)ϕ(z)] = −

d∑
i=1

∂ϕi(z)f(z)

∂z(i)

and

A∗
2f(z) =

∫
λ(z′)f(z′)q(z|z′)dz′ − λ(z)f(z).

Thus,

A∗f(z) = A∗
1f(z) +A∗

2f(z) = −
d∑

i=1

∂ϕi(z)f(z)

∂z(i)
+

∫
z′∈R

λ(z′)f(z′)q(z|z′)dz′ − λ(z)f(z).

Additionally, if p(z) is an invariant distribution of this PDMP, it then must satisfy the condition
that A∗p(z) = 0, i.e.

−
d∑

i=1

∂ϕi(z)p(z)

∂z(i)
+

∫
z′∈R

λ(z′)p(z′)q(z|z′)dz′ − λ(z)p(z) = 0.
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Chapter 3

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms have proved to be extremely effective in various
computation-intensive settings, such as Bayesian statistics (Diaconis; 2009), statistical mechanics
(Faulkner and Livingstone; 2022), and machine learning (Andrieu et al.; 2003).

Usually, MCMC algorithms can be implemented to do two things - estimating and sampling.
When we would like to compute an integral that is almost impossible to do by hand, say it is of
high dimension and has a complicated form, we have to turn to an approximate solution and use
Monte Carlo methods instead. Other times we might have a probability distribution in mind,
and we would like to generate identical and independently distributed (i.i.d.) samples from this
distribution, and MCMC algorithms are good at it, especially when the target distribution is
too complex to be sampled from using standard methods (e.g. inverse CDF). The second goal
is harder to achieve than the first goal, and we can compute good approximations once we have
obtained good samples using ergodic averages. For example, if we would like to estimate the
integral of the form ∫

f(x)π(x)dx =: Eπ[f(X)],

where π is a probability distribution and f is an arbitrary function, we could generate i.i.d.
samples X1, X2, . . . , Xn following π and estimate the integral by

Eπ[f(X)] ≈
n∑

i=1

f(Xi).

The convergence of this estimate is guaranteed by the central limit theorem, with a convergence
rate of 1/

√
n (Robert and Casella; 1999). This estimation scheme is known as the Monte Carlo

method. Note that this scheme works for any integral, as we can have∫
f(x)dx =

∫
f(x)

π(x)
π(x)dx = Eπ

[
f

π
(X)

]
for some function f and probability distribution π.

The rough underlying idea of MCMC is as follows. An ergodic1 Markov chain, after running for
several steps, will converge to a particular invariant distribution regardless of the initial position.

1The definition of this property is slightly involved in the more generalised Markov process setting. A key
thing about ergodicity is that it guarantees the convergence of the process to its unique invariant. See Meyn and
Tweedie (2012) for a detailed discussion on this concept.
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This means, once we have reached equilibrium, every new step made by the chain will follow that
particular invariant distribution, and thus we can easily obtain samples and compute estimations
using the Monte Carlo method afterwards. This also explains the name, i.e. we use the Markov
chain to generate samples and then use Monte Carlo to approximate.

The main obstacle of the above approach is to figure out an efficient scheme to construct an
ergodic Markov chain with invariant distribution being our target distribution. We will focus
on two types of MCMC algorithms in this chapter, which use Langevin diffusion and PDMP as
their underlying Markov chain respectively.

3.1 MCMC using Langevin Diffusion

Recall from the previous chapter that the Langevin diffusion is an SDE with the following form

dLt =
1

2
∇ log π(Lt)dt+ dBt

where π is differentiable and π > 0.

The fact that π is the invariant distribution of the SDE is essential here. If the target distribution
of the MCMC algorithm is π (which we know prior to running the algorithm), then as long as
we can simulate the diffusion {Lt} long enough, we would get samples following the desired
distribution, thus achieving the goals of MCMC.

However, as mentioned earlier when we introduced the Brownian motion, the path of a diffusion
cannot be obtained exactly, and we would always require some discretisation and approximations
while doing so. One way to approximate the solution numerically is by using the Euler-Maruyama
method, which we will introduce next. There are, of course, ways to remedy this issue. One way
is to do data assimilation, which is a common strategy in the weather forecast community (Law
et al.; 2015). Another approach is to use Metropolis adjustment, which we will introduce in a
bit.

3.1.1 Euler-Maruyama and Unadjusted Langevin Algorithm

Numerical solutions of differential equations have been extensively studied in the mathematical
community. One of the early methods to approximate the solution of an ordinary differential
equation (ODE) is that of the Euler method (Sauer; 2011). Consider the following ODE with
initial condition

d

dt
y = f(t, y), y(0) = y0,

then the Euler method will yield the approximate solutions wi at time ti with these values defined
by

w0 = y0, t0 = 0,

wi+1 = wi + hy(ti, wi), ti+1 = ti + h

for i = 0, 1, 2, . . . . Here, h is a tuning parameter and it denotes the step size of the update.
Naturally, the approximation will be better for smaller values of h.

When we have an SDE instead of an ODE, we will have both the deterministic drift term and a
stochastic diffusion term. The scheme to approximate the solution of an SDE, therefore, needs
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to be adjusted. This is known as the Euler-Maruyama Method (Sauer; 2011). Consider the
following SDE with initial condition

dXt = a(Xt, t)dt+ b(Xt, t)dWt, X0 = x0,

then the Euler-Maruyama method will yield the following approximate solutions wi at time ti
with these values defined by

w0 = x0, t0 = 0,

wi+1 = wi + ha(ti, wi) + zib(ti, wi), ti+1 = ti + h

where zi ∼ N(0, h) are i.i.d. noises and h is the tuning parameter denoting the step size.

So, using the Euler-Maruyama method, we can have the following approximation of the k-
dimensional Langevin diffusion with initial value x0 using step size h :

U0 = x0

Un+1 = Un +
h

2
∇ log π(Un) + ϵn, ϵn ∼ N(0, hIk)

for n = 0, 1, 2, . . .. In fact, we could simply write Un+1 ∼ N(Un+
h
2∇ log π(Un), hIk). This yields

a sequence {Un} which can be used as the output of the MCMC algorithm.

In the Statistics literature, this method is also known as theUnadjusted Langevin Algorithm
(ULA). The reason for this name will become obvious once we introduce its adjusted counterpart
in the next subsection.

Extensive research has been conducted on ULA to study its various theoretical properties of it.
Roberts and Tweedie (1996) studied the rate of convergence (if at all) of the approximation to
the target distribution. Dalalyan (2017) obtained a non-asymptotic bound on the convergence of
the approximation of ULA samples, assuming that the target distributions are smooth and log-
concave. Durmus and Moulines (2019) provided further theoretical results on the convergence,
as well as proposed a decaying over dimension scheme for the selection of tuning parameter h of
the algorithm in order to have good convergence properties.

3.1.2 Metropolis-Hastings and Metropolis Adjusted Langevin Algo-
rithm

One of the first MCMC algorithms is the Metropolis-Hastings Algorithm (MH) (Hastings;
1970). Given a target distribution π, a proposal kernel Q(·, ·) with Q(x,A) =

∫
A
q(x, y)dy where

q(x, y) is the rate of moving from x to y, and a starting position x, we have

1. X0 = x
For i = 0, 1, 2, · · · ,

2. Xcurr = Xi

3. Xprop ∼ q(Xcurr, ·)
4. Accept Xprop with probability α(Xcurr, Xprop) and Xi+1 = Xprop. Else, Xi = Xcurr.

Here, α(x, y) = min
{
1, π(y)q(y,x)π(x)q(x,y)

}
is the acceptance probability. The above algorithm will

output a sequence {Xn}, and under some conditions on Q the distribution of Xn will converge
to π.
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The overall transition kernel P (x, dy) of the above distribution is

P (x, dy) = Q(x, dy)α(x, y) + δx(dy)

∫
(1− α(x, u))Q(x, du)

where the delta function δa(b) = 1 when a = b and 0 otherwise. The above kernel consists of
two parts. The first part is when we accept the proposal which moves us from x to y, and the
second part is when our proposal is rejected but we have x = y to begin with.

We would want the transition kernel to have π as its invariant. It turns out that if the kernel
satisfies the detailed balance equation, the kernel will be π-reversible, or simply reversible, and
the π-invariance is guaranteed. Recall that for a Markov chain with transition kernel P to be
π-invariant, it means that we have∫

x

π(dx)P (x, dy) = π(dy).

Definition 3.1. A Markov chain with transition kernel P is π-reversible for some distribution
π when it satisfies the detailed balanced equation

π(dx)P (x, dy) = π(dy)P (y, dx)

for all possible x, y.

Proposition 3.2. If a Markov chain with transition kernel P is π-reversible, then it is π-
invariant.

Proof. Using the detailed balanced equation, we have∫
x

π(dx)P (x, dy) =

∫
x

π(dy)P (y, dx) = π(dy)

∫
x

P (y, dx) = π(dy),

as desired.

Reversibility is a nice property to have, not only because it makes checking for the right invariance
easier, but also because there are other various neat consequences of it. See Sherlock (2018) for
a more detailed discussion on this. However, this does not mean that non-reversibility is bad.
In fact, many non-reversible MCMC algorithms have exhibited better efficiencies than their
reversible counterparts (Diaconis et al.; 2000). PDMP algorithms that we will introduce in
the next section are examples of such non-reversible algorithms, whereas Metropolis-Hastings
algorithms are reversible.

Theorem 3.3. The Metropolis-Hastings algorithm, as constructed earlier, produces a Markov
chain {Xn} that is π-reversible.

Proof. We just need to show that the transition kernel P (x, dy) of the algorithm satisfies the
detailed balance equation

π(dx)P (x, dy) = π(dy)P (y, dx).

23



The equation is trivial when x = y, so we will only consider x ̸= y. We have

π(dx)P (x, dy) = π(dx)

[
Q(x, dy)α(x, y) + δx(dy)

∫
(1− α(x, u))Q(x, du)

]
= π(x)dxq(x, y)dyα(x, y)

= π(x)dxq(x, y)dymin

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
= min {π(x)q(x, y), π(y)q(y, x)} dxdy

= π(y)q(y, x)min

{
π(x)q(x, y)

π(y)q(y, x)
, 1

}
dxdy

= π(dy)Q(y, dx)α(y, x) = π(dy)P (y, dx),

as desired.

Even though the Metropolis-Hastings algorithm will generate a Markov chain that respects π
as its invariant, we do not know whether it will actually converge to π as the chain goes. This
question of convergence (and the rate of convergence) is a big and active area of research in
MCMC theory, and we direct the readers to Roberts and Rosenthal (2004) for a survey on
various existing results.

The Metropolis-Hastings algorithm does not specify the choice of proposal kernel Q, and a
different choice of Q will, naturally, yield a very different result. One choice of Q is simply
the normal distribution N(0, σ2I), and that algorithm is called Random Walk Metropolis
(RWM). Notice that in this case q(x, y) = q(y, x) for all x, y due to the symmetry of centred
normal distribution, so the acceptance function is just α(x, y) = min{1, π(y)/π(x)}. Another
choice of Q is using the discretised Langevin diffusion, which is called Metropolis Adjusted
Langevin Algorithm (MALA).

The algorithm of k-dimensional MALA is as follows: given a target distribution π and a starting
position x, we have

1. X0 = x
For i = 0, 1, 2, · · · ,

2. Xcurr = Xi

3. Xprop ∼ Xcurr +
h
2∇ log π(Xcurr) +N(0, hIk)

4. Accept Xprop with probability α(Xcurr, Xprop) and Xi+1 = Xprop. Else, Xi = Xcurr.

Here, the transition kernel is q(x, ·) = x+ h
2∇ log π(x) + (2πh)−k/2 exp[−|x|2/(2h)].

Notice that because of the additional Metropolis adjustment step in the algorithm, the Markov
chain produced by MALA has π as invariant, whereas the Markov chain produced by ULA does
not, due to the error that occurred in the discretisation.

3.2 MCMC using PDMP

A large part of this section is based on the survey article Fearnhead et al. (2018).

The dynamics of PDMP, as described in the previous chapter, consists of a stochastic jump and
deterministic motion between jumps. Essentially, for a d-dimensional PDMP {Zt}, we have the
following:
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1. (Deterministic dynamics)

dz
(i)
t

dt
= ϕi(zt)

for i = 1, 2, . . . , d and ϕ = (ϕ1, . . . , ϕd). So, if we are starting at zt, we will be at zs+t after
time with length s and

zs+t = ψ(zt, s)

for some function ψ.
2. (Jump rate) Jumps will occur at a rate λ(zt) that depends on the current position. The

probability of an event in interval [t, t+h] given that we are at zt at time t is λ(zt)h+o(h).
3. (Jump) At each jump, the state of the process will change. If the jump happens at τ , and

we denote the state immediately before it as zτ−, then the new state after the jump will
be drawn from q(·|zτ−) for some kernel q.

We would also require an initial condition, which we would commonly assume to be drawn from
some know distribution, i.e. Z0 ∼ p0(·).

In order to design MCMC algorithms with an underlying Markov chain following a PDMP, we
would need to figure out a way to simulate from it, which is not easy. One general approach is
as follows:

1. Given current time t and state zt, simulate the next jump time, denoted by τ .
2. Calculate zτ− based on the deterministic dynamics, i.e.

zτ− = ψ(zt, τ − t).

3. Draw the new position after jump from q(·|zτ−).

The above procedure hand-waves at some key steps. For example, we assume that ψ has a nice
form (say, analytic) and q is easy to be simulated from. Another key thing is the simulation
of the jump time τ . The jump occurs at a varying rate that depends on the current position.
This obstacle will not be discussed in this notes, and we direct the readers to Lewis and Shedler
(1979) for a more detailed discussion on this issue.

We would like our PDMP to admit the target distribution π as its invariant. So, we would need
to design the PDMP such that π is a solution to the Fokker-Planck equation A∗f = 0 where A∗

is the adjoint in L2(R) of the generator A of the PDMP. This means we need to have

−
d∑

i=1

∂ϕi(z)π(z)

∂z(i)
+

∫
z′∈R

λ(z′)π(z′)q(z|z′)dz′ − λ(z)π(z) = 0.

3.2.1 Continuous Time Scaling Limit

The MCMC algorithms introduced in the previous section (RWM and MALA) produce a discrete-
time Markov chain as the output. In the case of Langevin diffusion driven algorithms, the
discretisation occurs due to the self-similar nature of the path of a Brownian motion. For PDMP,
however, there is no diffusion component and only deterministic and jump components, which
means the trajectory of a simulated PDMP could be continuous in time, and this is the case here
for PDMP driven MCMC algorithms.

Continuous time MCMC algorithms can be obtained by taking a discrete time algorithm and
doing a scaling limit, similar to the construction of Brownian motion from random walk via the
Donsker’s theorem described in Section 2.3.1.
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Here, we will describe how one can obtain a continuous-time non-reversible MCMC algorithm
from its discrete-time counterpart in general.

The desired continuous-time algorithm will target a joint distribution of (x, v), where we can
interpret x as the position and v as the velocity which we keep its magnitude fixed here so that
v only represents the direction of the motion. So, the target distribution will be of the form
π(x)pu(v) where pu(v) is the uniform distribution over all possible directions v.

The discrete-time algorithm consists of two types of moves. The first type involves a two-part
deterministic proposal

(1-a) Propose a reversible move from (x, v) to (x+ hv,−v), i.e. move towards the direction of v
for h units of time then reverse direction. Accept it with standard Metropolis adjustment,
i.e. with probability min{1, π(x+ hv)/π(x)}.

(1-b) Flip the current velocity v′ to −v′ while keeping the position unchanged.

The above proposal is reversible, and we will keep the velocity unchanged if we accept the move
in position while we will reverse the velocity if the move is rejected. These dynamics are the
same as that of Hamiltonian Monte Carlo (HMC) (Neal et al.; 2011).

An algorithm using only this type of movement will yield a reducible2 Markov chain when the
dimension of x is beyond 1 as we will only move, towards to or away from, the direction of v,
which is a one-dimensional motion. Reducibility will refrain the chain from converging to the
invariant. So, in order to avoid reducibility, we have the second type of motion of updating v
from some transition kernel with pu(v) as invariant.

Now, we are ready to take the scaling limit of this discrete-time algorithm. We will assume we
have applied the first type of motion for N times between two consecutive motions of the second
type. We will let h→ 0 while keeping t = hN as a constant. The i-th movement of the first type
will occur at time ih, and we let (xt, vt) to be the state of the algorithm at time ih ≤ t < (i+1)h.

For small h, the proposal of step (1-a) will be rejected with the following probability:

1−min{1, π(x+ hv)/π(x)} = max{0, 1− π(x+ hv)/π(x)}
= max{0, 1− exp[log π(x+ hv)− log π(x)]}
= max{0, 1− exp[hv · ∇ log π(x) + o(h)]}
= max{0,−hv · ∇ log π(x) + o(h)}
= max{0,−hv · ∇ log π(x)}+ o(h),

where we say f(h) = o(h) if limh→0 f(h)/h = 0 and used Taylor expansion at various steps,
assuming π is at least twice differentiable. This means as h tends to 0, step (1-a) will happen as
events of a Poisson process with rate λ(xt, vt) = max{0,−vt · ∇ log π(xt)}, which is a continuous
time process.

To summarise, we have thus obtained a continuous time algorithm of the following form after
taking the scaling limit. If we denote the state of our d-dimensional PDMP by Zt = (Xt, Vt)
with some jump rate function λ and jump transition kernel q, we have

1. (Deterministic dynamics) For i = 1, 2, . . . , d,

dx
(i)
t

dt
= v

(i)
t ,

dv
(i)
t

dt
= 0.

2Roughly speaking, a reducible Markov chain will sometimes be stuck in a portion of the state space.
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The solution of the dynamics is simply (xt+s, vt+s) = (xt + svt, vt) for any s > 0.
2. (Jump rate) Jump occurs with rate λ(xt, vt).
3. (Jump update) If the jump occurs at time τ , let xτ = xτ− and vτ ∼ q(·|xτ−, vτ−).

The choice of λ and q thus determines the exact dynamics of this continuous time MCMC
algorithm.

Remark. As shown in the derivation above, the Metropolis adjustment in the above algorithm
is not removed but transformed into a Poisson process rate. Therefore it would be inaccurate to
say that PDMP driven MCMC algorithms are ‘rejection-free’, as was falsely remarked by some
people.

Now that we have a more precious form of the algorithm, we can obtain a more obvious conditions
on λ and q to enforce the π-invariance. As derived earlier in this section, we have

−
d∑

i=1

∂ϕi(z)π(z)

∂z(i)
+

∫
z′∈R

λ(z′)π(z′)q(z|z′)dz′ − λ(z)π(z) = 0.

Substituting and simplifying this equation yields

−π(x)p(v|x)[v · ∇x log π(x) + v · ∇x log p(v|x) + λ(z)] +

∫
λ(x, v′)q(v|x, v′)π(x)p(v′|x)dv′ = 0.

If we let v be independent of x for the invariant distribution, we have ∇x log p(v|x) = 0. This
means, we just need to satisfy

−π(x)p(v|x)[v · ∇x log π(x) + λ(z)] +

∫
λ(x, v′)q(v|x, v′)π(x)p(v′|x)dv′ = 0,

which, after rearrangement, is

pv(v)λ(x, v)−
∫
λ(x, v′)q(v|x, v′)pv(v′)dv′ = −pv(v)v · ∇x log π(x)

where pv(·) is a distribution for the velocity v. If we integrate this over v, we would have∫
pv(v)λ(x, v)dv −

∫ ∫
λ(x, v′)q(v|x, v′)pv(v′)dv′dv =

∫
−pv(v)v · ∇x log π(x)dv,

which simplifies to
E(V ) · ∇x log π(x) = 0

by exchanging v and v′ in the double integral term on the left. This equality holds for all π, so
we must have E(V ) = 0, i.e. the average of all possible velocities must be zero.

In fact, we would commonly design the algorithm such that the set of possible velocities is
symmetrical, and we have a flip operator Fx which is an involution, i.e. Fx(Fx(v)) = v for all v.
Thus, for any v and v′ = Fx(v), the invariant condition becomes

pv(v)λ(x, v)− λ(x, v′)pv(v
′) = −pv(v)v · ∇x log π(x)

and as pv(v) = pv(v
′), we simply have

λ(x, v)− λ(x, v′) = −v · ∇x log π(x)
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for all x. As an implication of this relationship, we can add any constant to our rates λ without
breaking this equality, but normally we would only use the smallest possible rate.

If we swap v and v′ above, we would get

λ(x, v′)− λ(x, v) = −v′ · ∇x log π(x) = −Fx(v) · ∇x log π(x) = v · ∇x log π(x),

so Fx must satisfies Fx(v) · ∇x log π(x) = −v · ∇x log π(x). As a result of this relationship, we
only need to know π proportionally to obtain Fx due to ∇ log.

3.2.2 Zig-Zag Algorithm

The Zig-Zag algorithm was first proposed in Bierkens and Roberts (2017) as a limiting form of
a discrete-time MCMC algorithm. The set of velocities considered for Zig-Zag is, assuming the
target distribution is d-dimensional, of the form v =

∑d
i=1 θiei where θi ∈ {−1,+1} and {ei}di=1

is a set of orthonormal basis of Rd. There are, therefore, 2d choices of v and the invariant of v is
the uniform distribution over all these options. This choice of velocities enforces the algorithm
to move in a zig-zag fashion, thus it is called the Zig-Zag algorithm.

The jump of Zig-Zag will occur coordinate-wise, and each coordinate will have its own rate. So,
the flip of the i-th coordinate is F (i) which changes θi to −θi. The overall jump rate λ will also
be the sum of the coordinate-wise jump rates λi.

With these given structures, we can deduce that in order for the algorithm to admit π as its
invariant, we need to have

d∑
i=1

{λi(x, v)− λi(x, Fi(v))} = −
d∑

i=1

θi
∂∇ log π(x)

∂x(i)
.

One way for this condition to hold is to have

λi(x, v)− λi(x, Fi(v)) = −θi
∂∇ log π(x)

∂x(i)
.

for each coordinate.

There has been ongoing work on both the theory of Zig-Zag and the implementation of Zig-
Zag. For theory of Zig-Zag, there are Bierkens et al. (2019), Vasdekis and Roberts (2022), and
Bierkens and Duncan (2017). For the implementation of Zig-Zag, there is Corbella et al. (2022).

3.2.3 Bouncy Particle Sampler

The Bouncy Particle Sampler (BPS) is another main PDMP driven MCMC algorithm pro-
posed in Bouchard-Côté et al. (2018). The flip operator Fx is defined to be

Fx(v) = v − 2
v · ∇ log π(x)

∥∇ log π(x)∥2
∇ log π(x).

Essentially, the flip will point v towards (or away from) the direction of the gradient of the
target distribution π. This gives the algorithm a ‘bouncy’ trajectory, which gives the algorithm
its name. The jump rate λ is chosen to be the smallest possible one such that the invariance
condition is satisfied. For some target distributions, this algorithm will produce a reducible
Markov chain, for which we need to introduce an additional refresh step from a Poisson process
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with a constant rate. This issue is highlighted and remedied in the paper Bouchard-Côté et al.
(2018).

It can be shown that, if the dimension of the target distribution π is one, Zig-Zag and BPS
are identical. The difference between the two algorithms really lies in their extension to higher
dimensions. There have been a series of followed up work on BPS, e.g. Deligiannidis et al.
(2021), and there have been ongoing comparisons between Zig-Zag and BPS from both theoretical
(Bertazzi et al.; 2022) and empirical perspectives (Bertazzi and Bierkens; 2022).

Another thing to note about BPS is that it has a discrete-time counterpart, called Discrete BPS
(Sherlock and Thiery; 2022). This comes after the introduction of BPS, which is the opposite of
Zig-Zag.
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