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Abstract

This notes is prepared for a talk at the UCL Undergraduate Math Colloquium in October
2022 under the same title by the author. This notes is mostly based on the paper by Noga
Alon and Yaakov Malinovsky [1].

A standard, fair dice has six faces, each with a number from 1 to 6, and the chance of getting
any one of the six faces is going to be 1/6. Imagine that we roll the dice once and get a number.
This number could be prime (say when it gives 2), and then we have ‘hit’ a prime in one roll. If
the number is not a prime (say we get a 4 instead), we will roll the dice again. If the second roll
gives us a number that makes the sum of the numbers from the dice roll a prime (say we get a
4 and then a 3, which has a sum of 7 and this is a prime), we have hit a prime in two rolls. We
will repeat rolling dice until the sum of all the numbers we have obtained is a prime, then we
stop and record the number of the rolls, and claim that we have hit a prime in that number of
rolls.

The main question of this study is thus: how many rolls, on average, do we need to hit a
prime?

This quantity is obviously random, so we will consider its expectation and variance to get a sense
of its performance. It will be shown later that the expectation of this quantity is around 2.43,
and the variance is around 6.24.

This notes is divided into three parts. The first part will give a more quantifiable description of
the question, and outline the proof. The second part will study the finite portion of the overall
quantity, while the third part will aim to obtain a bound on the infinite tail portion.

1 Problem Setup

Let X1, X2, . . . be independent and identically distributed (i.i.d.) random variables that take 1
to 6 with equal probability, each representing a roll of dice. We also consider the partial sums
Sn that is defined to be

Sn :=

n∑
i=1

Xi.

This is the sum of the first n dice rolls, and we would like to know when will be the first time
this sum is a prime. Let P denote the set of all primes. The quantity of our interest here is
defined as follows:

τ := min{n ≥ 1 | Sn ∈ P}.

The two associated quantities that we would like to estimate are E[τ ] and Var[τ ].
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We will consider the quantity E[τ ] first. This is not too easy to compute and estimate directly,
but we can make the following rewriting to make it more penetrable.

E[τ ] =
∞∑
x=1

xP(τ = x)

= P(τ = 1) + 2P(τ = 2) + 3P(τ = 3) + . . .

=

[ ∞∑
x=1

P(τ = x)

]
+

[ ∞∑
x=2

P(τ = x)

]
+

[ ∞∑
x=3

P(τ = x)

]
+ . . .

= P(τ ≥ 1) + P(τ ≥ 2) + P(τ ≥ 3) + . . .

=

∞∑
x=1

P(τ ≥ x).

This is a much nicer expression, and we would like to obtain a similar result for Var[τ ]. Since
Var[τ ] = E[τ2]− E[τ ]2, we just need to obtain E[τ2]. Firstly, we have the following identity

n2 =

n∑
k=1

(2k − 1) for alln ∈ Z+.

This can be easily checked, and it gives us the following.

E[τ2] =
∞∑
x=1

x2P(τ = x)

= P(τ = 1) + 22P(τ = 2) + 32P(τ = 3) + . . .

= P(τ = 1) +

2∑
k=1

(2k − 1)P(τ = 2) +

3∑
k=1

(2k − 1)P(τ = 3) + . . .

=

∞∑
x=1

(1× 2− 1) · P(τ = x) +

∞∑
x=2

(2× 2− 1) · P(τ = x) +

∞∑
x=3

(3× 2− 1) · P(τ = x) + . . .

= (1× 2− 1) · P(τ ≥ 1) + (2× 2− 1) · P(τ ≥ 2) + (3× 2− 1) · P(τ ≥ 3) + . . .

=

∞∑
x=1

(2x− 1)P(τ ≥ x).

Thus, we have the following expressions

E[τ ] =
∞∑
k=1

p(k) E[τ2] =
∞∑
k=1

(2k − 1)p(k)

where p(k) := P(τ ≥ k).

These two expressions involve an infinite sum. One way to approximate it is by finding the exact
value of the first many terms while finding an upper bound for the remaining tail terms. By the
way this random variable τ is defined, it should not be surprising for p(k) → 0 as k → ∞. This
forms the strategy of our proof.

We will find a way to compute the sum of the first 1000 terms in the next section, and will try
to bound the remaining terms in the last section. The choice of 1000 is slightly arbitrary, since
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any sufficiently large value will make the following work valid, and a larger value will only result
in a slightly more precise estimation.

Before moving on to the next section, we will first show the results of some Monte Carlo simu-
lations of this problem, to give us a rough sense of what the quantity of interest should be. The
following tables are lifted from the original paper [1].

Figure 1: Monte Carlo Simulations

2 Estimation of the Main Part

The quantity that we would like to compute in this section is
∑1000

k=1 p(k), and also
∑1000

k=1 (2k −
1)p(k). This might be a hard task at first, but if we can find a way to compute p(k) iteratively,
then we could write out some computer programme to help us calculate these quantities.

It turns out that there is such an auxiliary function that can be used to define p(k) iteratively.
For k ≥ 1 and n ̸= P, with k ≤ n ≤ 6k, we let p(k, n) denote

p(k, n) := P[X1 + . . . , Xk = n and X1 + . . . , Xi ̸= P ∀ i < k].

In words, this quantity p(k, n) denotes the probability that the sum of the first k rolls has sum
n and it has not hit a prime yet. We will compute these quantities for all 1 ≤ k ≤ K where K
is a fixed number, and 1 ≤ n ≤ 6K.

It is easy to note that p(1, 1) = p(1, 4) = p(1, 6) = 1/6 while p(1, n) = 0 for any other possible n.
Next, for k = 2, . . . ,K, and any n /∈ P that is between k and 6k, we have

p(k, n) =
1

6

∑
i∈{1,...,6}
n−i/∈P

p(k − 1, n− i)

while p(k, n) for other n is set to be 0. Notice that for a fixed k, we have p(k) =
∑

n p(k, n).

A computer programme can thus be written to compute all the p(k, n) for k = 1, 2, . . . ,K and
the corresponding n. Here, we will compute until k = 1000, since we are interested in computing
the sum of the first 1000 terms of p(k). Thus, we have

1000∑
k=1

p(k) ≈ 2.42850,

1000∑
k=1

(2k − 1)p(k) ≈ 12.14038.

These numbers are completely deterministic.
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3 Estimation of the Tail Part

We have established the sum of the first 1000 terms for the infinite sum of both E[τ ] and Var[τ ]
in the previous section. Here, we will try to bound the remaining terms.

We write E[τ ] = EK + ER where EK =
∑K

k=1 p(k) and ER =
∑

k>K p(k). Similarly, we have

E[τ2] = E
(2)
K + E

(2)
R where E

(2)
K =

∑K
k=1(2k − 1)p(k) and E

(2)
R =

∑
k>K(2k − 1)p(k). We know

E1000 and E
(2)
1000. The goal of this section is to give an upper bound for ER and E

(2)
R , which will

then complete this proof.

Proposition 1. For any k and n /∈ P, we have

p(k, n) <
1

3

(
5

6

)π(n)

where π(n) := #{x ≤ n, x ∈ P} is the prime counting function.

Proof. We will prove this by induction on k, and we will ignore those n that makes p(k, n) = 0 .
For k = 1, we have

p(1, 1) =
1

6
<

1

3

(
5

6

)0

=
1

3

p(1, 4) =
1

6
<

1

3

(
5

6

)2

=
25

108

p(1, 6) =
1

6
<

1

3

(
5

6

)3

=
125

648
.

Assume that the desired statement holds for all k ≤ m− 1. Then, we consider k = m.

Suppose there are q primes between {n− 6, . . . , n− 1}, then we have π(n− i) ≥ π(n)− q for all
n− i /∈ P. So, we have

p(m,n) =
1

6

∑
i∈{1,...,6}
n−i/∈P

p(m− 1, n− i)

<
1

6

(
1

3

(
5

6

)π(n−i)
)

· (6− q) by induction hypothesis

≤ 1

6

(
1

3

(
5

6

)π(n)−q
)

· (6− q)

=
(
1− q

6

) 1

3

(
5

6

)π(n)−q

≤
(
1− 1

6

)q
1

3

(
5

6

)π(n)−q

by Bernoulli inequality

=
1

3

(
5

6

)π(n)

as desired, thus completing the induction.
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Next, we would like to give a lower bound to π(n) to improve on the upper bound from the above
result. Notice that using the prime number theory, for n > 1000, we have π(n) > 0.9 n

logn . So
we have the following result.

Corollary 1. For any k and n /∈ P, we have

p(k, n) <
1

3

(
5

6

)0.9n/(logn)

.

This allows us to bound R1000. We have

R1000 =
∑

k>1000

p(k) =

∞∑
k=1001

∑
n∈{k,k+1,...,6k}

p(k, n)

<

∞∑
k=1001

6k∑
n=k

1

3

(
5

6

)0.9n/(logn)

=

∞∑
n=1001

n∑
k=max(1001,n/6)

1

3

(
5

6

)0.9n/(logn)

via double sum

<

∞∑
n=1001

(n− 1000)
1

3

(
5

6

)0.9n/(logn)

.

Let f(n) = (n − 1000) 13
(
5
6

)0.9n/(logn)
. For n ≥ 1000, f(n) is uniquely maximised at 1050, and

for all n ≥ 1050, we observe that
f(n+ 13 log n)

f(n)
<

1

2
.

This means that we can break the terms after 1050 into intervals of length 13 log(1050) and the
function will be roughly halved after every interval. This means, we have

R1000 <

∞∑
n=1001

(n− 1000)
1

3

(
5

6

)0.9n/(logn)

=

∞∑
n=1001

f(n)

< 50f(1050) + f(1050)(13 log(1050))

∞∑
j=0

1

2j

< 50f(1050) + 2f(1050)(13 log(1050))

< 7× 10−8.

This implies, the accuracy of E1000 as an approximation of E[τ ] is accurate up to 10−8, which
is great, and thus completes the exposition of this notes. The remainder term bound of the
variance can be derived similarly.
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