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Klaus Roth FRS (1925-2015)

German-born British mathematician, worked in Diophantine
approximations, Arithmetic Combinatorics.

Received his PhD from UCL in 1950 under the supervision of
Theodor Estermann.

Won numerous awards, including the Fields Medal (1958), De
Morgan Medal (1983) and the Sylvester Medal (1991).

Created a very rich mathematical legacy.
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Some background

Disclaimer

There is a similar named, and very well known Roth’s Theorem in
Diophantine Approximations, about which we will not discuss in this talk.

What is Arithmetic Combinatorics?

It is an exciting and active area of mathematics lying at the intersections
of several fields, including :

Combinatorics (of which it is a sub branch)

Number Theory (mainly Analytic)

Harmonic Analysis

Ergodic Theory

Probability
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Local global correspondence?

Most problems in this area take up a mathematical object (eg. the set
{1, 2, · · · ,N}) with some global assumption on its structure, and then use
this information to show that the object is forced to have some
complicated local structure (related to some arithmetic configuration of
the set).

Another closely related area of study is Additive Combinatorics, where
questions of the following kind are studied - given A ⊂ Z (we may also
take some other algebraic structure), one studies the cardinality of the
following sets :

A + A (sum set)

A - A (difference set)

A.A (product set)
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Building bridges

Picture Courtesy - yufeizhao.com
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Logical dependencies between results

The following is a common style adopted in (involved) papers of this
subject :
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Roth’s Theorem

A subset X ⊂ N is said to have positive upper density if :

lim
n→∞

sup
| X ∩ {1, 2, 3, · · · , n} |

n
> 0

Define, K-AP as k consecutive terms in a non-trivial arithmetic
progression.

Theorem (Roth, 1953)

Every set with positive upper density has a 3-AP.
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Some discussions on the proof

It is one of the most fundamental results in the field. Improving the
quantitative bound for the size of 3-AP free sets (or in general, K AP free
sets in [N]) is a central topic in this field. 3-AP free sets are also known as
Salem Spencer sets.

Roth mainly used Fourier Analysis (in the sense of the Hardy Littlewood
Circle Method from Analytic Number Theory) to control the size of
3-AP(later, another proof was given using Szemeredi Regularity Lemma,
estabilishing a link with EGT). But, this method fails for 4-AP.

The quantitative version of Roth’s Theorem says that the upper bound of

the size of 3-AP free sets is O

(
N

log logN

)
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Some more discussions

For f : Z 7→ C, the Fourier transform of f is given by :

f̂ (θ) =
∑
x∈Z

f (x)e(−xθ)

The principle arguements involved are as follows :

Assume A to be a 3-AP free subet of [N]. It is shown that the Fourier
coefficient of A is large. The condition that A does not have a 3-AP
can be expressed in terms of an integral equality involving :

Â(α) =
∑
u∈A

e(αu)

Density increment step : ∃ subprogression of [N] such that A has
desity increment when restricted to this s.p.

Iterate to obtain upper bound on | A |.
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Chronology of results (lots of log!)

Define, r(N) := size of largest subset A of [N] not containing a non trivial
3-AP. The size of r(N) has been improved from time to time, and in most
cases, the arguements needed were non-trivial refinements of the previous
one(s), although the main theme was the original approach of Roth.
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Chronology of results (ctd.)
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The case for primes (P)

Theorem (Green, 2005) [Roth’s Theorem in Primes]

Every subset of P of positive upper density contains a 3-AP.

Later, jointly with Tao, he proved that P has APs of any arbitrary length
(the Green Tao Theorem). The major techniques used were-

Szemeradi Theorem

Transference Principle

An arguement on prime gaps by Goldston and Yildrim.

Conlon, Fox and Zhao(2014) give a nice exposition.
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Szemeradi’s (difficult) Theorem : A Rosetta stone

Answering a 1936 question of Erdős and Turan, Szemeradi proved that :

Theorem (Szemeradi, 1975)

Every subset A of integers with positive natural density contains a K-AP
for every k.

Later, alternate proof using techniques from different areas of math were
given by Furstenberg (1977) using ergodic theory, and by Gowers
(2001) using Combinatorics and Fourier Analysis (where he introduced
the Gowers Norm).
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Bohr Sets

These sets appear very frequently in (additive) combinatorics and number
theory (for example, while finding APs in a subset A ⊂ Z), and are
required because sets we study do not necessarily posses the additive
structure of a group always.

Definition

A character χ of a finite abelian group G is a homomorphism χ : G 7→ S1

Definition

Let G be a finite Abelian group, χ1, χ2, · · · , χn be characters on G, and let
δ > 0. Then

B(χ1, · · · , χn); δ) := {x ∈ G : χi (x) ∈ e([−δ, δ]), i ∈ [k]}

is the Bohr set, where e(x) := exp(2πix)
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Transference Principle (Dense Model Lemma)

It is family of techniques, which aims to show that a sufficiently
pseudorandom set will be kind of indistinguishable from the ambient set
in some statistical sense. This startegy applies to many problems in
arithmetic combinatorics.

Definition

A sparse set is a set with the property that, it does not take up positive
proportions of intervals, for large intervals. Eg. the primes P, which grows
as (logN)−1.

Given a sparse set, the aim is to construct a dense subset of integers,
which models the sparse set. That is, given a sparse set A ⊂ S ⊂ [N], we
construct a dense set A such that :

1̂A ≈ | S |
N

1̂A
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Breakthrough by Bloom and Sisask (2020)

Breaking the logarithmic barrier

Let N ≥ 2 and A be a set with no non-trivial 3-AP. Then

| A |≤ N

(logN)1+c
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BUT, the story doesn’t end here...

Very recent developments

On the night of February 14, I was randomly surfing through the arXiv,
just when I came across this astonishing preprint by Kelley and Meka,
which gives an improved bound (better than even conjectured before):

Theorem (Kelley and Meka, 2023)

The maximal size of a subset of [N] with no non-trivial 3-AP is less than

2−O((logN)β) · N, where β is an absolute constant.
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...not HERE as well...

I became even more surprised on opening the arXiv next morning, as I
came across this amazing exposition by none other than Bloom and Sisask
(was a little startled by the time gap - just a single day!):

Hopefully many more interesting things would follow!
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Some open questions

Erdos conjecture on arithmetic progressions

Let A be a large set such that :∑
n∈A

1

n
= ∞

Then, A contains arbitrarily long arithmetic progressionss.

The survey by Gowers titled Some unsolved problems in
additive/combinatorial number theory has many open questions, along
with the book by Bajnok (2017) and the article by Sun(2013).
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A small advertisement

A group of enthusiastic students at IACS Kolkata,India (including me)
organize a biweekly Seminar Series, aimed at dissipation of knowledge and
networking among Undergrads from all around the world. We welcome you
to share your work and give a talk in our forum!

Youtube Handle : @iacsugwebinar
Email : iacsugseminar@gmail.com

Homepage : https://sites.google.com/view/uws2022/home
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All’s Well That Ends Well

Questions or comments are always welcome : maitreyomaths@gmail.com
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